Print Friendly and PDF

JAPON KAĞIT KATLAMA SANATI

Bunlarada Bakarsınız



Vygonov Viktor Viktorovich

Teknolojisi. Japon kağıt katlama sanatı. 1-4 / V.V. Vygonov. - M.: Yayınevi "Sınav", 2013. - 95, [1] s. 

GİRİŞ

Japonya origami ülkesidir.

Origami sanatının, ülkeye kağıt teknolojisinin gelmesinden sonra Japonya'da (Şekil 1) ortaya çıktığına uzun zamandır inanılmaktadır. Bazı tarihçiler, kağıdın yaygın olarak kullanıldığı diğer ülkelerde (Arap ülkeleri, İspanya, Fransa) origaminin ortaya çıkmasının mümkün olduğuna inanmaktadır.

https://lh6.googleusercontent.com/FwT5zMF3Cp5ifGOmpBZhs5J6T_VGfP5PvjYIVRIfN4olC1f3kSIK_nlzq5dqoAi8TUVid6nOCQc36ro-vY3f0urAyOWqqSp14YfymYamEZCBGs2u7H4hZd52fP9Z4-0AcnRGku-M4TcLVHCdTmc-xLPnK1KRzZbhpUz8uerfs0v082vR9gOGtpPZL5TsgVKv-0n8pg

Resim. bir

Ancak sadece Japonya'da bu sanat insan yaşamının neredeyse tüm yönlerine nüfuz etti: tiyatro, dini ritüeller, eğitim, faydalı ve keyifli boş zaman. Japonların bu ülkenin kültürünün karakteristik güzellik duygusunu somutlaştırabilmeleri origami idi.

Doğu'nun kültürel mirasının bir ürünü olan Japon kültürü, yine de benzersizliği ile öne çıkıyor: dış ihtişamın aksine iç zarafet tercih ediliyor.

Miyabi (rafine zarafet), mono no farkında (doğanın pathos'u), wabi (sakin tat) ve sabi (zarif sadelik) gibi kavramlarla ifade edilen Japon güzellik anlayışı, estetik ve duygusal bir uyum dünyası önerir.

Modern Japon kültürü, geleneksel Japon ve yabancı kültürler arasındaki bir dizi temasın sonucudur, bu sayede ikinciler ilkiyle tanıştırıldı, asimile edildi ve uyumlu hale getirildi. Bu sürecin dikkate değer bazı özelliklerinin arasında esneklik ve yabancı kültürlere karşı açıklık olduğu söylenebilir. İkincisini reddetmek yerine, Japonlar onları kendi estetik çerçeveleriyle uyumlu hale getirmeyi ve yaratıcı bir şekilde Japon ihtiyaçlarına uyarlamayı tercih etti.

"Kültür", edebiyat, görsel sanatlar ve müzik, din gibi alt dallara ayrılabilen eğitim, sanat gibi alanlar için kullanılan genel bir terimdir.

O zamanın dini, doğanın tanrılaştırılmasıydı. Tanrı ile insan, doğa ile kutsallık arasında net bir ayrım yoktu. İnsanların dini duyguları, doğaya olan bağımlılıklarını ve bunun sonucu olarak tabu ve büyücülük tarafından güçlendirilen doğa korkusunu yansıtıyordu. Japonya'da dinin ilkel biçimlerini inceleyen bazı bilim adamları, tarımsal ritüelin bir parçası olan büyücülük kültünün, daha sonraki ulusal Şinto kültünün temeli haline geldiğini savunuyorlar.

Tanrılar sadece insanlığın savunucuları ve mutluluk verenler olarak değil, aynı zamanda insanların duaları ve ritüelleri tatmin edici olmadığında yok edebilecek kötü ve intikamcı güçler olarak da hareket ettiler. Birçok Şinto töreninde, çoğunlukla taştan, metalden ve ahşaptan ve nadiren kağıttan yapılan çeşitli tılsımlar kullanıldı. Bunun nedeni, 7.-5. yüzyıllarda olmasıdır. Japonya'da kağıt hala nadir ve oldukça pahalıydı. İlk başta, yalnızca ortaya çıkan Budist tapınaklarında, eski el yazmaları ve Vedaların sayımı için ve ayrıca törenlerde ve ritüellerde yaygın olarak kullanıldığı Şinto merkezlerinde kullanıldı. Bu malzemenin teknolojik olarak gelişmiş olduğu ortaya çıktı ve ahşap, metal veya kumaştan yapılamayan ürünlerin üretilmesini mümkün kıldı.

Sanatsal kağıt katlamanın Japonya'da dini amaçlarla bilinen en eski kullanımı,   eski zamanlardan beri Şinto törenlerinde kullanılan   katashiro ile ilişkilidir. Katashiro, özel (kutsal) kağıttan kesilir ve günah ayinlerinin ritüel temizliğinde hizmet eder.

şeytan çıkarma için tostlar (Şekil 2-1-2-3). Şintoistlere göre, katashiro tüm kötülükleri emer ve ardından yakılır.   Katashiro'nun unsurları   bugün çeşitli törenlerde kullanılan kağıt kesiklerde ve Japonya'da Mart Kukla Festivali vesilesiyle oluşturulan kağıt bebeklerde bulunabilir.

https://lh6.googleusercontent.com/JVnzkJGTsEIZmk-HZ8XdNjfhallFWJcQCWHYTm_vI73hNPB9ZcVONhOPrb1ktEALb6uSZT5zlyaS5otYerBwcbWbQ-hafnP7WgWDJTlkQAJETeQ2aWQYy8vV3LSHOk0wyG9GLVin1C6o_YHcOQikjo6ra0HRLLPgiJxIR7KJmsmWTb7MzEAeG3Dw4aOJ0LXYt16sEg

Japon kızları tarafından "evcilik oynamak" (anne-kızları) için kullanılan kağıt bebekler arasında en popüler olanları   ninyu kyogami idi.   Ve bu popüler bebeklerin gelin kostümü giymeye başlaması oldukça doğal. Japonya'daki en eski kağıt bebek türü "ane-sama" veya "abla" bebektir. Bu kelimenin daha doğru bir anlamsal çevirisi gelindir (Şek. 3-1-3-4).

https://lh4.googleusercontent.com/hgwK2NtW6bMkfY02z9IKrwFwAQT25T0JyGEc5_Hu_p3IHkLfznhfDk0FgJNtvQvkRl3MCul2SsLEGmCg3KDYvWtqYzcodFi6jMrA1GuK7kLQ-HMFg5SI1oJOsSNKw7TJhfg0-Rs61imyE_IqjTd0RwMXVLDVK5i5Q79uDQgUIQa7YSeoIoqeFAjzCUXZsoDFHZNk1g

Resim. 3-1

https://lh3.googleusercontent.com/ezQaCP6Bfz8Tx5cl8eQD5FAzQXAOuBkXHIsfXND8WSKEvOpNl1hUySgqnqeSv4xaFwMFbeEZlN_iwE2blSuTQg1F4eL_gsxP10qlvUNfRGUnMRrtYVRehxhRltxk15Btfbptgu3yTkzGddJ7IndG-1_uGIQGKj0l9KzvLNwx1NaMkPpgOpnDbZqVAZwpgQL_z35bCA

https://lh4.googleusercontent.com/E02HEjgT8iaBMBanX-9IUHBomR5UCAkUTxJ-rbkdXW2X2q_I3AFz8Uy_Y-ZRJxSXAJ45fgnth-D_X5AoIcrf4EPD_MGU9ffDyaM5HOgQ5CHayTOE7lB8Vk-Wosm30SrR_CW_ezHljf2kFenGm7CPpjIau5qykzeUakgSb-5TAPm-YpGaiQPONMRTGF8dk9Z-Yq-S7g

Resim. 3-3

https://lh6.googleusercontent.com/B4ZciAhuIpTQnlQsnEJWevrtfEuHIKhuAdtSzOKYjrx8mA7H9SiL3gGRPrrZGuOm9fLzUuz3USRG1mmG9KABaj_wIM8VrmWpQpc2ZFO-CKRw6yFWlC1glUwp3CPVXsJ87G5fY-Tr0eg9cd-G3HoXN5RhdZDwwlx3GkuuSmS2LH1845kuSyLu4m2zFRuu3Gq0thDOww

Resim. 3-4 Origami'nin başlangıcı gohei'de (shide, nigite, nusa, mitegura olarak da adlandırılır) bulunabilir. Bu, özel bir şekilde kesilip katlanan dar kağıt veya keten şeritlerle süslenmiş bir çubuktur (Şek. 4). Gohei, ritüeller sırasında Şinto tapınaklarında rahipler tarafından kullanılır. Gohei üretimi için genellikle beyaz kağıt alınır, ancak bazen altın ve gümüş kullanılır.

Zigzag kağıt şeritler genellikle hasır iplere veya iplere takılır (şekil 5). Resim sapından yapılan bu halatlar, pisliklerden ve kötü ruhlardan korunmak için kutsal yerlere asılır. Bu tür halatların ilk sözü 1300 yıl önce literatürde ortaya çıktı. Bugün Şinto tapınaklarında asılı olarak görülebilirler.

Shimane Eyaletindeki Izumo Mabedi'nin ana ibadet salonunun girişinin önünde kutsal bir ip (shimenawa) (Şekil b) asılıdır. Uzunluğu 8 m, çevresi 4 m, ağırlığı neredeyse 1,5 tondur.

https://lh4.googleusercontent.com/K4iDhBvywWqAN7Z8P1b69ntG_UMjRC0QqKdLUAyp-0aWgkH_8Cd8jg_LqthwzpD-b2ssqYg2w6MQW8tOJyg-15WTbxL-v4zAlFhu--D4cyILVBfMCzCvuIXmIJ3wAtiqDlJ23KwEZ5nywGbgkbhDYuoRO4n_gSmNEZlIDid3PaY-3_vik-szdceOFD8BlM6FOwbsZg

Resim. dört

https://lh4.googleusercontent.com/PuhdZ8TOB1Cqo_Plg7im7FaeH7MBCAPFhNnkNJEzqnFvFx1TDMKOBKAsnGNaKz1f3YWun13u-LMGc1RQ9MLDrolvZXx59ZP4mVXCuwz_lJxtg9Z0Yvlze9Ntvmnxnb-XDzo241PndwjZ2dQPTTKgsJcAusc0eHfHPBJQHtu4m9nYOuHy3SrMhYJ5xOS4zOd-76daVA

Resim. 5

https://lh4.googleusercontent.com/naXPMQ0uRaN_4i2J2Ylb4AqTO_-ieBu1GkS3YAmlUJd-fVw1jnWUbiVtU-QO6zgUougwAxveugV95txtAs_r5uwNJB75xEwIMEI4xY0w1rZ_GA-9FCFph5CR52690ycq2CKQ1Khz_KY9WhbOtgmXpNdjuKRUIfxYG7Qo9-CHTwGpiaWwPeRbqTsK_S2u4CLJ9TTn7g

Resim. b

Kutsal ağaçların gövdeleri de gohei asmak için kullanılır. Bu halatların daha küçük versiyonları, Şinto sunaklarının üzerindeki evlere ve Yeni Yıl Arifesinde - kapıların üzerine asılır.

Yavaş yavaş, kağıt katlama sanatı Japonların laik yaşamına girmeye başladı, mobilya dekorasyonunda tiyatro kostümlerine yansıdı. Origami, hediye paketleme sanatı olan Japon folklorunun önemli bir parçası haline geldi.

Özel günlerde verilen hediyeler için ambalaj kağıtlarını katlamak için birçok seçenek vardır. Düğünler ve cenazeler için, sözde seikeyi süsleyen süslemeli (örneğin, erkek ve kadın şeklinde kelebekler) özel kağıt kullanırlar. Kağıt katlama yapıldı ve Japon folklor ritüelinin önemli bir parçası olmaya devam etmektedir, örneğin, yük yapılırken kullanılır (Şek. 7-1-7-4).

https://lh5.googleusercontent.com/gZcDaZRUEujoMszLIue3EAMIKo6th2NuA_dhQbcfA6-0NUh3bN9J61JZV0MR_dryah9j1v8QtTMgMwUP9JdRrGCQJkVL8MKskyy7uc0PtdVVhRPsoYap5kbk_f5aqwQ9ZYbanWJiqmYkovLmqRKqr65s0L2fjvk2Ehs1f9e1wtMgpimhRF2bj3jQEW-e9bshOyZ3vw

Resim. 7-2

Bu dekoratif katlanmış kağıt.

İle birlikte

https://lh6.googleusercontent.com/SccyeecNMG8m532fJ3g-qw7K_1GHGz4Td4JtT1fu96CyWf_D8E8u-UHGcgXVUGiUsNz654LmPhX9AcyNMsDuEKjMbKDUtcf8u9kA_pdSKZ63aK9drZfbDVhou_H4vJuRaYTMTqSozj0GDDFPLgJO1RKpa89So1_Ff1ag7wzW_Khj-5MIGpWqaRlbFemeFSL32bitxw

Resim. 7-3

Resim. 7-1

kuru şerit

https://lh3.googleusercontent.com/tOVllhT833u16BYUjBeVn2mmYZUD1M3CwxpsMonqRNonmpD_QVAL9RrioLI__wh3hQl86ii5-muDH6ilV6NAS3pis4-WxSO5W5dzKJerrMXLF7h29iGdfPPDc8Cqtu9iefxNgW9PXPtCWo_qcn9rmzpLomnGBzReKSB4c8anke1c14_eyTDRwN21w-K_kd7e_Z6vIw

hediye paketleme menti).

Abalone, Japonya'nın kıyı sularında yaşayan bir tür büyük deniz istiridyesidir. Japonlar istiridyeleri çok eski zamanlardan beri biliyorlar, yendiler ve kabukları çeşitli amaçlar için kullanıldı. Abalone, Japonlar için asimetrik görünümünden dolayı karşılıksız aşkın simgesiydi. Bu görüntü, 8. yüzyıldan beri Japon şiirinde yaygın olarak kullanılmaktadır. Şu anda, origami'de, deniz kulağı aynı şekle sahip katlanmış kağıtla değiştirilir - bu, kare bir kağıttan katlanmış uzun bir altıgendir. Yapılan figür altın ve gümüş veya kırmızı ve beyaz iplerle bağlanır. Folklor ritüellerinde tate de kullanıldı - bir tür kağıt gaga veya göğse takılan bir el çantası.

İlk bakışta, bir kağıttan bir rakamı katlamak basit gibi görünüyor, ancak bu aktivite biraz yaratıcılık gerektiriyor. Origami tutkusu, gözlem becerilerini geliştirmeye yardımcı olur. Sonuçta, örneğin bir hayvan veya kuş yapmak için onların şeklini, hareketlerini ve alışkanlıklarını bilmeniz gerekir, aksi takdirde köpek köpeğe, serçe serçeye benzemez. Ek olarak, nesneyi görmek ve hissetmek önemlidir, aksi takdirde çalışma tatmin etmeyecek ve öğretmenin hareketlerinin tamamen mekanik bir tekrarı olarak kalacaktır.

Ürünü tamamlamak için, uygun boyutta bir orijinal kağıt yaprağına sahip olmanız gerekir. Origami için en uygun kağıt boyutları: 15 x 15, 20 x 20, 12 x 18, 15 x 30, 20 x 30 cm Sayfayı dikkatlice katlamanız, bir köşeyi diğerine eşit ve doğru bir şekilde bağlamanız gerekir. Kare için 4 hazırlık kıvrımı vardır: bir diyagonal boyunca, diğer diyagonal boyunca (Şek. 8), soldan sağa (bir kitap gibi) ve yukarıdan aşağıya doğru (Şek. 9) directrix boyunca ikiye katlayın. Bu kıvrımlar birbirleri ile kombine edilebilmekte (Şekil 10), birçok üründe tekrarlanmaktadır.

https://lh3.googleusercontent.com/mRMeWfdKB16xKkLLs9YICthD77fkAzHhOyAYqGBK87uFmcV1hW2c8mZXVOt_dhsM9ft16oxA3jj4FbNcqpCiFmJCDk5PINBd-f96T5X9m-649ooDcihwdf91t2gD7Ivv0_w090CdV2gzCCYRWf3DV9O2TrIrAl-A4vGH5D_SV_EAK6Zc_FWcVG3jx2FVr7LhYR6RcA

Resim. sekiz

https://lh5.googleusercontent.com/hzM0jDQ__YnoTcFu5ezUiiu_CoIfXHTRALMQT90fMKGsyjYPWLarCBRVutiBSBjzMiz8JjuI7_5mCDr8VuWLMxg0MKpxQsH37BZLaE7s4xtvPel6Nij6Ycmcfb20ohxSrhUyE4y2nAyW2pvBYqmIgBAWJygMbnZpj63KD254T3oRd0nmapjtpTNpJx97qNXEVlriLQ

Resim. 9

https://lh6.googleusercontent.com/ZuOKzxPvROO8oE8D-7Z034kZGNgzXDkRFJH7yfkEl1lNj8Yd5HcvoGetgwUzC7byP22QbIZLPyQpXOiuGptKN8gqRb-bzTlnlTuALr-QrkWZgYzKJe2_x_z7o9xKQYjFIoda0o9u0VqgvoZ1aiEAOloGkRSFwqEZDYveo-J7aVt4qSrdBQGeqjEGvybxc4nfGiGqBw

Resim. on

Ürün elemanlarını katlama tekniğini geliştirirken, aşağıdakilere özel dikkat gösterilmelidir: açıların tam bölünmesi (örneğin, 45 ° açının üç eşit parçaya bölünmesi (Şekil 11)), kıvrımların doğru uygulanması. Kıvrımlar neredeyse "keskin" olmalı ve içlerindeki kağıt katmanları sıkıca oturmalıdır.

9 birbirlerine. Aksi takdirde, bükümler üst üste bindirildiğinde, sonraki işlemlerde elemanlar yer değiştirir. Her bir çalışma aşamasını tamamladıktan sonra, tüm kıvrımların "netliğini" kontrol etmeniz gerekir.

https://lh3.googleusercontent.com/HwtHJ_awuUIp5rFcsSottVHy8VD0XNKYQQqXjyh8cTyGinLhM6oL3Oas94PB_VvMiCpni20pXy140Vu_5YLQpzjZu1r37geE7yeHPKzwELlPromXS-7Hmr3D3cV_Tt6E9wsf_XjxDAPDPHLtrlZDdE7siZMpXketAbqtE-Uy9R0WI6s6KK9p99tQE5qxtSFy597M3g

Resim. on bir

Simetrik kıvrımları katlama tekniğini (pençeler, gaga, çiçek elemanları yapma) yaparken, bükülmüş kenarlar birbirine sıkıca bağlanmamalıdır, çünkü sonraki işlemler sırasında birbirleriyle örtüşebilir ve ürünün görünümünü bozabilirler. Bu tür büyük hatalarla, ürünün katlanması bazen imkansızdır.

Origaminin güzelliğini anlamak konusunda belli bir bakış açısı vardır. Bunu sanat olarak algılamanız ancak hassas bir zevkiniz varsa mümkündür. Bu sanat çok kişiseldir, çünkü farklı insanlar tarafından yapılan ürünler karakterlerinin, eğilimlerinin, ilgi alanlarının izlerini taşır. Şu anda dünyanın birçok ülkesinde lisenin origami sanatıyla aktif olarak meşgul olması tesadüf değildir.

VİNÇ VE KAPLUMBAĞA

Güzelliğe duyarlı Japonlar, kültürlerindeki önemli sembollerden biri olan turna kuşu (tantyozuru) (Şekil 1) gibi sıra dışı dans eden kuşlarını görmezden gelemezlerdi. Dans eden uzun boyunlu kuş figürleri, iç mekanları ve ev eşyalarını süslüyor. Görkemli güzellikleri için turna resimleri genellikle ev eşyalarında, hatıra işaretlerinde, amblemlerde ve tılsımlarda dekorasyon olarak kullanılır. 1797'de klasik Sembazuru Orikata, Bin Turna Tılsımının Katlanması yayınlandı. Şekil 2, bu baskıdan küçük bir vinç zincirinden sarkan büyük bir katlanmış vinci göstermektedir.

https://lh5.googleusercontent.com/LMdC55TcBMCRV7UXE5gxEDVTCU2g7mXAw-cNdPFznc6eskB5SWV4sOCdw0I0SGTNnRQ4PEj3Q5DZJVQxRKPeVDAOpuQdBd8ixWEvfKYc-GV9gYeHBd_XBKYB410OZxBzn4Qi68-4_mVFwVi3VIyMEWIq4DcWxsVrenEUsLbJfxM0PV1OBC4S7-aqbon47NMsIWFhjg

Resim. bir

Japonlar için vinç, uzun ömür ve refahı simgeliyor. Tuhaf bir şekilde tsurukame kaplumbağası ile tek bir hiyeroglifte birleşen turna, uzun yaşam dileği haline geldi. Vinç aynı zamanda umudu simgelemektedir. Bin kağıt turna senbazuru yaparsanız, dileklerin gerçekleşeceğine ve hatta ciddi bir hastalığın ortadan kalkacağına inanılır.

Bu hikaye 1945 yılında, insanlık tarihindeki ilk atom bombasının Japonya'nın Hiroşima kentine atılmasıyla gerçekleşti. Yarım milyon diğer sakiniyle birlikte, Japon kızı Sadako Sasaki'nin ailesi bu talihsizliğe katlanmak zorunda kaldı, o zaman iki yaşındaydı. Şehir yandı ve

yere yıkıldı. Sadako, nükleer patlamanın meydana geldiği yere iki kilometreden biraz daha yakındı, ancak herhangi bir yanık veya başka bir görünür hasar almadı. Birkaç hafta sonra, şehrin hayatta kalan sakinleri korkunç, anlaşılmaz bir hastalıktan ölmeye başladı.

A B C O EF

https://lh5.googleusercontent.com/Y_S9GsYV-8uVelcU39wG_CLrzreMgC7k7jzxWnC1Y11CxiRJhHklUXz0mfAaPuWnMGD_T928eYoRFZUZhuo1MaFnHenkyPyGca0FDyEYWTT54Tc2SnpucT-Gx1LQsU2O50Dtrn3fzojZJipHF8D8j5LQAhAXrTX_J2ZBs72v0IPuS9UaFsjayGFDzA-nDSh35c3BZg

Ac, B'yi b ile ekleyin ve g / ile G'ye kadar böyle devam edin.

https://lh4.googleusercontent.com/ddQIkxQkQYwgHleHjukuteL9lIj1Iz1BpObppipYuVmSfdHRCPjr0lpmkHQNXcvtPMT6-4Ch8Q9MO8RuhKfHkjb1ysGMqPnfy1kezTf03BBUo9B1j3e8oFWuoE4uFedMq12A3LWj1azMCT2LoY0pulv7cAE_ecVvNxv7MKPHrNYo_pIDSl-R1AtaW6s6fH4Fz-nu3Q

(Her taraf yedi eşit parçaya bölünmelidir. Diyagram Satoshi Takagi tarafından restore edilmiştir.)

https://lh3.googleusercontent.com/Rh7RQCk9htrzQZY32f84Q6ZX33Envdrr_12bpsDhzVov1GsWuhvIxhG4p4mVUidsOUhtsBnQ5aDG_be-Ok41lb51NZwgYx_pNzsja0aDri4YcuNkg9zn7XCYvKrrytqFYErh6HtjvhwjbtmKlyrH8eMh3i6dF24lfPe-1hzp8690MIhgXiMnpdQMmNndBpz_lDT2Gg

0

hakkında_

Turnaların başları O simgesi ile gösterilen yerlere katlanır.

https://lh5.googleusercontent.com/xZdw-ohHjECzoQ6L9u_0Y61276LPGKUgkQwgoR4JHa7LsZESGQizzEgQO2nfm8XqPTFngIUcZF8OnEw3PiPYXagqlFkRRbpLzFEMk7UwHrsPMXTd50ySJvforsWXqrQHwKIpElHUJ-D7AcKvLsR4MIkeKk4XCdKL7NyviZy57ztkEsKaKRhnQcMkgpzewKRgVQxEiw

Resim. 2

On iki yaşında, neşeli ve çevik Sadako okula gitti, okudu ve tüm çocuklar gibi oynadı.

Kasım 1954'te radyasyon hastalığı belirtileri geliştirdi. Bir keresinde, bir okul bayrak yarışına katılarak, koştuktan sonra kız çok yorgun ve baş dönmesi hissetti. Olanları unutmaya çalıştı ama özellikle kaçmaya çalıştığında baş dönmesi tekrarladı. Bunu kimseye söylemedi, en yakın arkadaşına bile. Sadece çocukları olan anne ve komşu komşular bir şeylerin yanlış olduğundan şüpheleniyorlardı, kalpleri kaba düşüncelerden batıyordu.

Bir gün düştü ve hemen kalkamadı. Muayene için Kızılhaç hastanesine kaldırılan Sadako'nun lösemi (kan kanseri) olduğu ortaya çıktı. O zaman, kızın yaşıtlarının çoğu lösemiye yakalanıp öldü. Sadako korktu, ölmek istemedi.

21 Şubat 1955'te lösemi teşhisiyle hastaneye kaldırıldı. Chizuko'nun en iyi arkadaşı geldiğinde hastanedeydi ve yanında turna yaptığı özel bir kağıt getirdi ve şunları söyledi:

Sadako'nun bir efsanesi var: Japonya'da şanslı bir kuş olarak kabul edilen turna bin yıldır yaşıyor; hasta bir insan kağıttan bin turna yaparsa iyileşir.

Bu efsane, asalet arasında kağıttan katlanmış figürler (“origami”) şeklinde mesajlar yapmanın popüler hale geldiği Japon Orta Çağlarına kadar uzanıyor. En basit figürlerden biri sadece “tsuru” idi - bir vinç. Japonya'da kaplumbağa ve turna uzun zamandır mutluluğu ve uzun ömürlülüğü simgelemektedir. Bu nedenle inanç ortaya çıktı - bir dilek tutarsanız ve bin "tsuru" eklerseniz, kesinlikle gerçekleşecektir.

Sadako, tüm varlığımızla yaşamak isteyen herhangi birimizin muhtemelen inanacağı gibi efsaneye inanıyordu. Sadako için ilk vinci yapan Chizuko'ydu.

Bin turna, bin yaprak kağıttır. Sadako bin turna yapmaya karar vermiş ama hastalığı nedeniyle çok yorulmuş ve çalışamamış. İyileşir iyileşmez beyaz kağıttan küçük turnalar katladı. Vinçleri katlamak için yeterli zamanı olmasına rağmen, yeterli malzeme - kağıt yoktu, hemşirelerden ve diğer koğuşlardan gelen hastalardan almayı başardığı herhangi bir uygun kağıt parçasını kullandı. Sadako sadece 644 turna yapabildi, bu yüzden arkadaşları turnaları ölümünden sonra tamamladı.

https://lh4.googleusercontent.com/RRAbVHHfEocXryge32FEE6VmUf6CVfZg0eIef1klSO0K6jhc_dWKj2dz4U0Ir0KLMZOwYLGz0b5sXE6nLmhXRWOLd7k57br6_POXDVGTMSe3MLWJpEX6HB8twNOi0YdhyWt3r2KuVGljrOq_PQc4poF0eIKUcAC7KdOA6GbY-_oKdZCtGooJ3fCnFNOhvvX0txCJzA

Sadako Sasaki Anıtı

Sadako 25 Ekim 1955'te öldü ve binden fazla kağıt turna cenazesine uçtu. Görünmez iplerle birbirine bağlanan binlerce vinç.

BAZ (ZHURAVAYIK)

https://lh5.googleusercontent.com/YbGG0Bx6jdsRo5c4GyXATPxDRiczHm74u6DbmYhAvI-XFSoYOAaJMiFc91LKqwpKobfvITBRKVH98_zH-60g3YDjkpHNx9I9tuX21uEpFNktwCsM748uuX92kr-_9JEBj08FIrgwSwDxvtF6J1eVBLLw1MT77c277yrkHdusAbLsSMhsf2gxhx1MFWWFFQgW77dnaQ

on dört

VİNÇ 1

https://lh5.googleusercontent.com/ILDQ_s4i1iQNeh79v53FY6JNCXDEbejrIZUNJiAK2n2EvJ8eIyJP3be2qIHPkC1AZFwP5z4xE1Y88LSag8QuzxHD0L_x0ZUIj1mRoZ2ya2Eb4xDdrowrMqNgtqD2PBL1w7vne321VZoVs0tA-XGleIChM5o-0WTXOcFtmF_uYRBLJweac1pD_9_CXZ6Vk_1u-vZ4ZA

VİNÇ VE KAPLUMBAĞA

VİNÇ 2

https://lh4.googleusercontent.com/lIS5FzV52l8mJ18R-MIACmBlfXLtdYoyZjKEoM2eN21xUzhff3kPvAaQpfkwluKP1XOrOaZ0BYgyGz1mdr3c3HnhVfGkZ3zXLBaoW1kY5ZlsMj2E2FFRL13zKRFxtyH3nWtA5IxiT4BGFSuq0uRVNJGXUXTYP4Rj7_VQr5yFHO1SsF74wk7YX240wgtOF22E-0Cnbg

16

VİNÇ 2

https://lh5.googleusercontent.com/VF2F0SpkXHjT6Q1e7xd_xKgfrPNe6MedVvu2Tob7YCyzoj4rmlE3U4aSVwxfZbwYQWw1XtemwoEl7CyfoaE0Nn3kGqae96jB12LLZY3J1c3ahNvJaOiGY-Ry_MC41Ufngol0btcxZpwwK2CXjTXp85KxTCHwxcJKnX5i4ujSQszC1loZm5uqzizHsep6UXJidGXluQ

https://lh6.googleusercontent.com/JwrCGVrfTyLWZ3qR3Wifs8-L16NnqIoJ1z6tHXOKLie2gR9xyzrRL10r8yg-8YU8IafZMjM7mtGSWaPmZ4OfUSj9car7oMkH8vmjO0zm5UZlDL8c8lFJFITOkwXI0qqWb1xUBuFhZ3lCdYdY2GMoCqAOvRs4Z6u9PQQA7GBoIHUfetEcezyIpJD7utVLjBHZSN6uIA

gövdeyi delikten şişirin, kanatları yayarak

17

VİNÇ VE KAPLUMBAĞA

VİNÇ 5

https://lh4.googleusercontent.com/WoKEnFcUu6_jkCXVJ8nvkbe1pghG5zkrQgFN9GmIeuHTs4h8CZH27JsOZ4_mrP2JMHWW4BYea_nJkcsjeJVil0R6SF1aYd1T4qn-_Z_bgVKYJNlH8F85Pgag3Vyg9A9_nDoR4STQRLfaMh-lb4oXb47-8pzgFY9ZTKj-9qp23T43FoJ9gn9Pers6VPXr-jLQAlsn7Q

VİNÇ 4

https://lh3.googleusercontent.com/uHj9OSzdGC5QIliwg8yooEyUTM-IQaBqx8E5WH6PGtkD7XE3uNR5cMbHBSmuEfwUuyKEgfcO2KLPKG48nCD1dMCiwcCf6ruvChkGIVUEuzaihkCrFGaAcJJPOOWN8PHMTpg6-Z8vZm4A9GENXzh4EUwkkWFtN3lc_u3i2nwnlwlia2QkceWMny_PtXacHwBcNMfwvg

vinç kartpostalı

https://lh5.googleusercontent.com/LOA37h_k2SlqhWNBeWmmTkenH511i491kBxe6gV5efEl3P3e9xNPzcLoWhYnvXjYwDd5yIjj2rPqad87J0L-CwSC0b36XoOoXR-Tb9xFhqpYRJYs2Ky2cBLHG4Wh6pmYLCE-vJea3_SgMz-jp3UTp5Ji3BGGq4KhI2yI9BP_u8qjfOPmVcIOmzKbFkHqA_W9hZEwkg

yirmi

vinç kartpostalı

https://lh3.googleusercontent.com/gX7cGvKlP7b9Rab8spYuLX0cfdLOrvxSOb8jAxhMiiqmggQOk3trDbeQzJPGPhBa9glKmGxEkpnrEURyF_zvqFKFvtgrZkZS6GEVCerF2XjjTLYa8JkYJEgeHEgsiaE5XGIx-H9gr9-NqV6-z4OEPMwKHbzWY0___RgoynTAlvDlbz2-s1z72q0tf7arv6JrrFhKhQ

https://lh3.googleusercontent.com/YChh0k18ePKnDXKrmJbZM2fMa3-KPWszPlL-SAXNnYIAD9no4XZQF5SA0gWlQdEB_l7hVD9F2qkLvY3nNtAvgptIb9VXudkdIch10ERImKNRQo4g5sXrxOHVYq4OhabNRutbtUFVjR1-SpGjYkT-0EJDqvPnjLAZPHGTUTsxASZMPkKMXj6W-jyffUArMcwmPA0ZSQ

* - 7-16 pozisyonunu tekrarlayın.

KAPLUMBAĞA

Doğu mitolojisinde kaplumbağa, evrenin kendisinin görüntüsüdür. Kaplumbağa kabuğunun üstü gök kubbe gibi yuvarlak, altı toprak gibi düzdür. Yaratılışın başlangıcı onunla ilişkilidir, bu nedenle kraliyet mezarlarında her sütun bir kaplumbağaya dayanıyordu. Aynı zamanda suyun sembolizmi ile de ilişkilidir. Bir kaplumbağanın kabuğuna tam olarak girme yeteneği, konsantrasyon, orijinal durumuna geri dönüş anlamına gelebilir. Kaplumbağanın ünlü uzun ömürlülüğü ölümsüzlüğü simgelemektedir. Tüm kaplumbağaların anasının sudan ve ateşten yaratıldığı söylenir; başka bir versiyona göre - takımyıldız Yay'ı oluşturan yıldızların ışığından.

https://lh6.googleusercontent.com/s-LVxidG_PoMNown4nuHrQLDJNBrt7lhPswLvlpyUZtRXfBM9r5GVyTN18kDNV1nBxnEF5fgqLbJBmeAnZqZYwEMeU0Q7QJT1YqQqXddcGtPtreJmjpqiLYvRuh0Vv2jmj7u3qkPtYlHIntcHN6LZP99eyATxMZtVoFvCoyKiiFEf9NsbkPBDJeHo2JJhwjjZNPrxw

https://lh5.googleusercontent.com/obdVOWcO5rVtPJY-IC_GsoP2ta2p3zeE_Cus41fHx4SlcLRI5Ea2v4TXteVDQ9B5b28SRyOxkprQQS60jUkGZc-YjiOnUgcBbfOVEwQET0P2bFp5EhZ7K-PyASb1_Eb0aoDk2xtZbF7-3XJ-oixPVegUU1i5gYajOmIN6lcsRv5graGxiHO8KJwBJvDNlOzYv5zTiw

HAYVANLAR

TAVŞAN

https://lh5.googleusercontent.com/adeSW5FTZ6i5PbivUEoLX1De5oMXW8KxKNBlBVcesAaA3aKuBY64ZlbWDU3Vl0RASZ6GpqdlLcfp4PsdB6XlY7yjr3Fjz2jzOX9xyHbmidF7apjHgSw-Fr6fKEesJ2j9qt8a88NSY7iS7BnvmDa9yzHJe92YAPZWvZ_-frU3Dj3z8qftjx_9-NkiIObAPodtSlCNzg

FARE

https://lh5.googleusercontent.com/_xtxvg79dM3DMzG93558529f6KzjGVWOBzL-VnLVXbNsOeXhcVXBNpouFhJWtFsVXf4bfZVzB3wqjUKFPYHcssHYGyYuQMRCG0Q_2qaeZ0DVoHkZ0Hn9yk1HQu2_rRJkXnL-pAEfV6qt7tozxF_A9wdvU_YuhiqdDWbAGOeT8FP3R7qrICgxQFotEHSyS7_hInlHsg

MAYMUN

https://lh6.googleusercontent.com/Fd31tiWa6OraMDBAw5aLMcBE0D4cRgZKKrBx3fXhuEzhC3Bf2Ru5uu51xY59BGNY4rAOU349Dj8H4O-N_i3sj7kZVIriH3XTxeTYidDZsc98D43kmMoHabzfJnRil_7j0cwsHVeqakk67K3NzCbu-xxMhRup4-rT4vmDbtzcIF96xvdBogs1gFROelpgF0rBMjxTrg

LZ

https://lh4.googleusercontent.com/7yXjUA2mvOQnMw-3rRS1qVaCQ_Glrmqs8zBTvMwA4fmR8IQQM7GJS-GuxJKjfmhXaNRS8gy_w91AjoL2iNlpKfu2659bzjaXb-OUkYjlkqVza-daorwgQdZbdiCAc9FOYZkKCnWFSahd4T0PSr_sw-RT9ti4iJ5urFpOeBHaQ4-qqJRUi0Ai1pJR5wwLAZX4Alc2qQ

FARKLI HAYVANLAR

YILAN

https://lh6.googleusercontent.com/J7WgOji4f49Ynm8-YEDEKaDEbKnZ8L5oBiPO1G2qwxLe3GykHhSn2gbfiiAc16_BqJcZQyi35TbZdGxBHaZs2ohw8AHnLua5zNDb1N0_glyDSt-Rj4DGgO6-iDTpOKfk_QYbvxv8Ke8PoDfB9OaDMLElj0SakAJYepxjcDY7qLs3JSpw14UJZUzRQW3cNskl4ufVog

HOROZ

https://lh4.googleusercontent.com/B0HD1h19keQIM9IiIYUGfe04QKQ7Kp65PPkuAsGOGBWnnW4vo0TSHzw5Y5ctyoim_W5T7s_tKEwBCgi_R_5Ba-X364cyJ5OCMO0BPpc_uMrDJnR3-KQrW-2gDXMHD_gUkeMH1YWKCFWerZZLClFlUC8xO8LplcPSMEYLfHv4rxTni0QLtXbCDnxbfYJqIEvUmvL7Rw

"GÜNEŞ" VE "FAN"

Bu kompozisyonlar (Şekil 1, 2), origami tekniği kullanılarak yapılan figürler temelinde yapılmıştır.

https://lh6.googleusercontent.com/BmoEBWccTkoqoRRVPsASQMc3kSwOnzFasur3jVIPUTdtUX1Tr6ZWEq1Obr6DSyKVOFU8A50s_dnQvltGee5BLlrluSWUIU2biBPS8SBwJcwgE01UhcPkbpIiMg_sIBKs9R0UwVVBrRROZHlZnkxTTqfvvvLLyTmWNb3dsz2HevJTyp4Hmco5CkIGqvRtIPNBcXKT6w

Resim. bir

https://lh5.googleusercontent.com/ntC5nHnIX8dYJGUsbVeRtAVkkpJ4-h9lSt_khOD0H5V59QduarjQCdwT-3eXk9qx23sCLQMWgAYahkO1Fiv1lc91sEKEMwSo9Z87z1-q1s1PLYwquOVgZXh6jEc5B-ACKt4wWUN64swayOo1cpXFjP4sWSZGcBayunwTw77Ai75szVleYTy27JtngUQv6r8lH-sZ3Q

Resim. 2

https://lh5.googleusercontent.com/R-StFJxi-NbKveGIacmERse0J72ZDljrWiQLVRqOGpKdU_0y0hwmD3pn5qSQmno4Kv26vjk5-OGN072E3lq9jg-TDWHI_eG6Gnvl3mnDaHoTpwqWV5dp4FwEeipewwRWa3WvlPbSaNINDIYUXX6XGglix85m8Rw9FMa9K-j738SjgLIvdHykO1Q3Bt82YYyi3ekQBg

Resim. 3

https://lh6.googleusercontent.com/HCl3-Gy4f-MzAKyMqi9FPqgHYWlFes3CQbQQHvG4CT3DjC4ar6jmYnlhlSugc7fg6JS3szGwe_NsbdETUUTY_fCW5kZlMVG99hcSt6hHZBDBJxpMpydcPSOj-i50KUODMlM0tQY5Ox4j7OTXiTt29n7arnnddLsAaI44pHlH5lAmMkQlN3_EHhqO61V-1H230CiUaQ

"Güneş" bileşimi (Şekil 1) boşluklardan yapılır: bir vinç - 100 mm'lik bir kare (1 adet); vinç - kare 110 mm (1 adet); çam - kare 60 mm (5 adet).

"Fan" bileşimi (Şekil 2) boşluklardan yapılmıştır: bir vinç - 80 mm'lik bir kare (1 adet); vinç - 90 mm kare (1 adet); çam - kare 70 mm (3 adet); çam - kare 95 mm (3 adet).

ÇAM

“Güneş” kompozisyonu için çam, şemaya göre çift taraflı sarı-yeşil kağıttan yapılır (Şek. 5). “Fan” kompozisyonunda, aynı şemaya göre (Şekil 5) çift taraflı sarı-yeşil kağıttan büyük çamlar, çift taraflı yeşil kağıttan küçük çamlar yapılır.

Her iki bileşim için vinçler, şemaya göre beyaz kağıttan yapılmıştır (Şekil 3).

İlk kompozisyonun arka planı güneştir (Şek. 3), ikincisi için - kırmızı veya turuncu kadife kağıttan yapılmış ve 2 mm kalınlığında beyaz veya açık mavi kartona yapıştırılmış bir fan (Şek. 4). Sıradan karton kullanırken, her iki tarafa da kalın beyaz veya mavi kağıtla önceden yapıştırılır.

ÇAM

https://lh6.googleusercontent.com/gHJvWTtU-6s1bCT5TTC6gnPMyDlWmsJtYgmYqEAIKJhZPEySzimYSoUp0oS1zKG0Bxbw4dZKyvh5v8ABfAu4EpXGbafjAPm95MwuZlHd8evT7WMF_9kTxH6fmjevOA2XiyHeWrTzlJOLRAlmnR64KxPX6_KRptz4YYneFBGYNQblx1LRTjgoujQyyr3bo4Do77PQzA

Resim. 5

VİNÇ

https://lh4.googleusercontent.com/gxrrxJjb-8Va-OOyJ4mOk2e4fHk-UfAaH7yWNPMxMCa0UavcSqc60_Da_sTjv2oj5Zy5g6TVc7ttc0O_nGiy08_2fcyu_O6HT9-rFiJy7yDyGZyVjnJ_JCDPyjQ9bbZZizf5E1fLQ52nuqDXy8dhAxga4i0Rk4-SYvTT6BoBQWAzEhmud3xTSclBSGiRi_PdtkTtvg

https://lh6.googleusercontent.com/71ezeTCjDi1W5c5OZN5C6wJsEpc333xuWeAA3tOyKrw1AwgymUuzX5LDOD37e6WP2cdtU-4DjLVIUOvCf7eD3zhg6muAbk9SnomRZPHBZaA3aMXSoQELfsezwlFtobInStwzw3p7shGCO3mpk4vM5BhXlqtyxli42mMsWuJ34bdE6z3sLW8lJVuF6gtrsCYK67MF9g

YENİ YIL VE NOEL

https://lh5.googleusercontent.com/QALSjSNyhBXslyKDyJw29v2UDF4F9mHUv8JI4h3A6Shzs1yxWSlzgY4gTay4nqqS2z2Yi6vQ0aq7r5MAC391z-08K2Ny_tdi4JaHs52keO5TeHzl5ncVnqYKEuQxwVJOXhi4VGetwN3p_ZZxlGGdlfgjvhK2lMRzUy_LAtlxmlYQOwLF3srnafX_aUtvJiOf2Zyyfw

NOEL AĞACI

Rusya'da, Yeni Yıl ağacının geleneği Peter I dönemiyle başlar. Ağacın aslında ülkeye Noel niteliği değil, tam olarak Yeni Yıl olarak gelmesi ilginçtir. 20 Aralık 1699 tarihli kraliyet kararnamesine göre, bundan böyle, kronolojinin dünyanın Yaratılışından değil, Mesih'in Doğuşundan ve Rusya'da kutlanan o zamana kadar "Yeni Yıl" gününden tutulması emredildi. 1 Eylül'de "tüm Hıristiyan halkların örneğini izleyerek" 1 Ocak'ı kutlamak için.

Bu kararname ayrıca Yeni Yıl tatilinin organizasyonu hakkında talimat verdi. Yıldönümündeki anma töreninde roket fırlatması, ateş yakması ve başkenti (daha sonra Moskova) iğnelerle süslemesi emredildi: “Büyük caddelerde, kasıtlı evlerde, kapıların önüne, ağaçlardan bazı süslemeler koyun. ve çam dalları, ladin ve beyincik örneklerine karşı Gostiny Dvor'da yapılanlar. Ve “yetersiz insanlar” her birine “kapıya veya tapınağının üzerine bir ağaç veya bir dal koysalar da ... ancak ilk gün Ocak ayının o süslemesi üzerinde dursalar” davet edildi.

https://lh6.googleusercontent.com/zJ0w4qUeCTTi9_AI_ptMg6jcFcoQ_BUlutUOqhQ0fcsCSdqV68JOVF9QBwim1O4j0rsJRXnLJSiMRazkjTdFRolilnuC0trWbWJVyYK8YPrvc6dUNCAbX9dqR7A5RHF198CackM75PnvSRTYrkPszUpbFUy1zbmQPvK_v1f5CxVEsiOOlyB67RxH75D0pSMuI8snpA

https://lh6.googleusercontent.com/x88ndqh5VmMWKFBH8FAnFRa7WDa8iG1aZ6K7HI8UPkIhc3kbqoUu4NwMnmvxW1KgO_pl0K6tNUxvmhxsNs19w733d_fwC6pF5vV5enHIafY5KWaa8a2x77U6Qln03vrykeojnKB9MRdvJR6EbCETnnXda5SeiIjnNjXxmxCxp-QYXUmb7SYn8pSvn9bXhJmIYbEPBA

21. yüzyılın Noel ağaçları

NOEL AĞACI 1

https://lh6.googleusercontent.com/5oe4XdSFBzYQRuMNKSzUqu1DxVZI3sZ6CRhtGW605gakm2vqYPblWOHYUYOiOucKJKxVjsZp7KPrzaZaYuS4deJscKGvdUiBZfwZH0OvSmXbBA3_fSnyALXX-tO3oj2LDqkEUqSVRkiPi2g9MK6RNyVqiBZ0HYlJ4PFMmctVIBB8NYlK3NiJ6M5y4K4SmXDAjo0fqg

YENİ YIL VE NOEL

https://lh3.googleusercontent.com/QTF4N0joQUv39K_ScDiYu1CPzSkWiwLDvLUTO7BfHqpm-Ai3XdXRDEZGFZlYwn9nBE12T1x72sim2REkHN4ctLrbYEo3g7GleI5tXfAXeE3KqeoG0skWJfVmb2U_3fCLCMiLv1YulxumRkH_DW8RWSvpgReLUbnwVJgiNAOlu1gAndr-OZv7VB1NlR5G-eTYgJXtrg

NOEL AĞACI 2

https://lh6.googleusercontent.com/vf8PKmqAgOf7C_nbsT3CwldUy83DwmPjVpimrBjSzzsW7_LFIv4OYrKUPbyn_ItNLC-YqaGTd3mdknQ0FJDR7vYsJA4kzzN6a7gFl0sk_wtqd0i6EwHfApig1f67V_VtkqF8r2xnAIcY0w0qvH_5zOHKEEFPlZZk9RP-taExdR2MHbUsK-_WiLFC4u1FoM8hRZU-3g

https://lh6.googleusercontent.com/u3H2P96DZXyIi_-nqpXg1JNDayg2yAm6OtGwkSlVfIi6wFDIlBNEETKf2czY0wA7HfCcr49y77vpZ397ugmGWAHrk_YrABh-cW5s9IBgx0hpLhnfJzP8AiTAg9NdPMOcQSmDuSjoCwnoPeTWyW9TiPpCjph1o9yuFeb0jo_PD3jykdb9Bv70ApiXkrv65rjbrTF2yg

NOEL BABA

https://lh6.googleusercontent.com/DI8N1HM7n__2fZtR9bF2eMD44P12v3lSfH9k6-LdRJxXoithyDI3gpJJoh7dMygDsn3R7kGrZJT7YV4XC9_RozRSa2seNO1BGQf6Gdhq7jSt5kc-BIIAj0vWncwicVbb3NAbohMPbAQiWkBUOSUIcEW_cW1YEJKww-CuvSZ9tJRPw2v4i7cLQJo8kJgjldU-alkICw

NOEL Çelengi 1

Noel çelengi (Şekil 1, 2) ince parlak veya lamine kağıttan yapılmıştır. Yazıcılar için origami kağıt ve renkli kağıt kullanabilirsiniz.

https://lh3.googleusercontent.com/8FN7llCnPJDwg1AlUvvAgelMX-kA1hCRbwTqa_pakmiwsiPrVwhdVjoot_KXkwwJuhtwySDJ0nv8oEdLaL5UYnGxz8X-eoLXII2AQC80gfGDX_matTxw4awO7OVdm4UMoZiMbQQ5z5dcCYPxjmhhalkemN7vml4LWY4Zx-aOUZxPQvFHDZRe7ZEN07Ve3URXuN0sXA

Resim. bir

https://lh3.googleusercontent.com/NkQIxert-gbL_G2N5_YinL6EJf52eEvwWfVycMQ_X5ZmDZbNqCjKgkf0RW_QzsqQhAb0WWTEoGrmrvclNf7CdJdFckINQPJH_fhg7xZ5F6-Dy-pS6ydpNkt85aMrrh7bJvk5JdIz64iNNBS8-jYfPJsmi_BZQ02jmNLlMR0TvGd19sgCxh7OCg7VSWRyRLHecuYZaQ

Resim. 2

Çelenk tabanı sekiz özdeş elemandan oluşur, bu nedenle boşluklar aynı boyuta ve aynı kalınlığa sahip olmalıdır.

Çelenk tüm elemanlarını yaptıktan sonra birbirine yapıştırılır ve çelenkin bükülmemesi için yükün altına yerleştirilir.

Bir çelengi süslemek için fiyonklu çanlar yapabilir (Şekil 3, 4) ve çelenk üzerine çok renkli figürler (daireler, yıldızlar, halkalar) yapıştırabilirsiniz. Yükün altındaki çelenk üzerine yaylı bir çan yapıştırılır.

https://lh5.googleusercontent.com/JrRsGdaw6ZPcb1zZ2F2iDn2_a5C59HkMMXPygMfFrH3VK9WcRy_YTGhyetL9rVOKoXwWNXNkzDCgvHo20VOI1ro8SjYNvn0EK8XujHkPyKhwLUbLqLjshCndr2YgVCQLrzaCpfyoriAQq2EVQxgUbLojsqIf-nfTvwk36WjAOfUKeS6ihJg7K7VgDC16kLdREWfy9w

Resim. 3

https://lh6.googleusercontent.com/BrPzJ5eFpZwynzeY7PyqaYiIBuTXH2Gm5lAniAXUlrSUmtymyN39_aq7A-TlgaphSr0iFqp9_klQ79iPp-GlM9E3pIJn-fKFPEoOcubcAML4NHQ4lVEtvGhEFUJASwiDV2S6rW17Xtg8Jx33A7Pz0PnuQVLNyc1c40VXYMwhlMNtviaTvIxvYd110XXpo7yVVIqxsQ

NOEL Çelengi 1

https://lh5.googleusercontent.com/HdS-xM18KR8CfZQd5pjLt90veRjcKSM5bEHF0fFN1yb9KnqDrOHias05mZ6ISM_3bINvIKLhBnE65yAvlo0rrfi6iLGtIze-QTBmq-oPvi60JA2oIfdo-_i5BZk8N4JBw0Tefp7ztQfiSzv0USvPnbxvLMotvr6fO_4qd_aCt49enz7CTqwR2prQP7Trl-s_KzmvLQ

ZİL

https://lh4.googleusercontent.com/ZwH2c1gF5eoqnKJCi0izPAzIr2xHc9gRBzZiNQdzokE_9D5bqKDAZEcmi7H01fC879IJ8J4lQqW84Tm-bv0sDrhqnrh4Rm_LYJUNo8Nv1s92Bgq1d1xEGGRVB8ceGjFhONquJSuE8BqMGth-4MkPe8YBU_8eDGbO_yJb8KxjtuFr_8HzAkluEgEsD03YzPjdy8ASfA

BLNTIK 1

https://lh4.googleusercontent.com/Pf4sAlFGz-Wp6sAC1bbItDATgPUKiCJ7zo-a9kJsW09Onc6CtCccXeQLwlNPPb68Voy10w3PDr3tNELX1IJGzc7CZuL0iJCLPkQiuiahBBrNtPNWOsioWM1s6-bCJbnFfDgQSQsnLLA4gvkskNVVkoKiIDElzLsPnQfHcBtq-kuat1gjXDgBucztnvGc78o3q4nUog

42

Noel Çelengi 2

yay 2

https://lh5.googleusercontent.com/r4dU8efo5Q7_TkfwzdHKRLbykds1c-oaMIVnchhbkfRn-ZaVuuuIKHSrWJ2STB5A6j6YjdQ2IBWwIbWSdZrWUK_0Hlf2shkZXAivcwfuYSreGcspC4m8gZsN-TyQBOPQHRI-6SIVsyatIxl6HsbqvC4wBXIULfTboTluXWUfvtxgcZsWDzTS5PZNjLpUB9DXDKlGHw

Noel Çelengi 2

280 mm çapında bir Noel çelengi yapmak için ihtiyacınız olan: bir çelenk için - bir kare 170 x 170, bir mum için - bir kare 140 x 140, bir yay için 1 - bir kare 125 x 124, bir yay için 2 - bir çan için bir dikdörtgen 105 x 55 - bir kare 90 x 90 .

https://lh5.googleusercontent.com/Xhy2M_GHZZWNPTXCQQlxXh5I-OjAOnvvlVPTjr8RFvwdzob88ewDZijtPd-K4RB3iad86If4yCGEL3NRDWn00vvxZRos1Z6j84HMZzjKAIztybjA7BdvSpVP74YcRrp5vPur4XuQoy_IEwqPZ_QzCDF2tdQWfDRGxInyckHjzFjDHkELKM8zQYDWkQQkVZT2u0iIPQ

Resim. bir

https://lh4.googleusercontent.com/SpkyIElzEvTr4Muzz_jyyKUXdU0foac6OBlfqIkJ_G1XoEqyMx4K4v-T7zBRnxk28R2CpCQYRwcQXLvCx7UJAM_IBaoJ_hyvmY9jbc9QgRAzFDt4VAyC5HKjYajj-5_9m8lBBB2pqqDCUTkbgGPnvrTUftrMN5hsj2QTZ6BMdM37aeWiyrXBTaqZmeq4YYYTilqkbA

https://lh6.googleusercontent.com/iZfHUHZ4DuFj61gcfFEhCeKV-u4SlkA7IHSOg82XAcXmtYlOY4t0aZmpGI4OA0aNCAgwCVAPIB4mKLc4MG9dbCmYuNAG8zqSAf0BFMgiEpOH97izYheRHCEzMEVJzARHmYPcM8gnzeCYPZH_YmsTxBdm84TqNkDNNlWYFf4L2fwGYJOlunSyg8m-43hDECvvmto0FQ

https://lh4.googleusercontent.com/d7cOmGaM267oAj5OPio5u3rX0Xyas_FaexjritgWpoUR19sRYOs4Ogrz5p8qQzOz6xB-4uZAGdjk_DX1LZ3CfQO4vZmD8Ds4ksKXo4JZf1_3gzykE04ZV0d-Rp3al-A2GI6f61N-Y6nzsxTT9trQsm8b7Vs0riiGbr0BpYumgBBUCezascn5shYNXvUSHV-Xl7NN-g

ÇELENK

ÇELENK

https://lh6.googleusercontent.com/gFM2RO__-Z80UB46fkb2SmyY5vFaYndOWmmAXDUkfrQIjpPONI4AdXLMSRjDla-AV2_A77ZlHzLa2JmASwFHc251Z11vfSMSd_84-kLrYsvlTo7IHAlFSqQIDsfFcpvGL8x4j4jdahxVnsjdjryXpZfeor8wwo59IcvuBnd2EEIaknTRKejV33rRfQRR5Ua6xFMwag

ICICLE

https://lh6.googleusercontent.com/m6i7FipcnbHxraaQ1GZJmkVoR4azuz-mw4w7_JMDwaH3n_QQ_ynGtJX89HWsJMt09Qs5GDy__NtKbO9xGIEISprwg65gUhQdGD28k-wYRRwhonDfsisit0m0ue-pzog7l82pfYjAxPxEUuzBt0DcSVcn3Y1TMvo2MFe2YsJ7w6Iz5ZHmhkL5ySRIL4TbhzezTlAhbw

KAR TANESİ

https://lh3.googleusercontent.com/1UHpMlb2TBYLqnJzpBP1pQ2Fjngns5c1kgDWP16ZuqBmRNEQQVpASOzDwMPdTYpuHSX2UHLkSR8r2myzn8VSmR3rHifliwxQK5xBrqga_L5wpmysG-xPefaV9IOUqrIGarsua2pL_8mJPv0VII3pUWBq67vCHKmO14oDBaxrBwY7_aCAUdy3gOCA0FpHQS3EiJqUTw

HEDİYE SEPETİ

https://lh6.googleusercontent.com/-FxHinU-OMhTijup89ivmoG1d-CTPN2dG7cAn1HbiIBCmKXCeJXjE-798Lj_9meH1vuV9D61IFsDxiSZu599-cl5JIFSimVDoNkHcR5-cdJQKfRtkT0Y8HjEsuQRym0zVGDW2cYnZsOnJ2O7GHeLWimWn1Zlk-qfyOJ6A11Vo6tbZTVH3TR-nM39a5CO4OuYwySwmw

 

ŞAPKA

https://lh3.googleusercontent.com/eyjZ4u4Z7tEMTk8IBQkzeJiYAjkAGh8fkyHm6GknSdiD65SUEPMBrRPqQbBBFrCk9uA6VM2mC09KJVgciLC-LrRht_J3ljyduXSLTtQaceVa_IBXAlVN5WRGVFvZo-Dhp0pUUEDSQ-OCnAiOfmldfIGUnOG4GTmpCY_h-YOWB8QhTlnMEuW7B3gcul_gwUpuKXm51g

YILDIZ

YILDIZ 1

https://lh6.googleusercontent.com/H5Db-nSKH51dQKHvNysIZvyE08Y1nbzaoorTyBfQqtRPLaZdjEVrBc3faJERx8co_c3pqp8_2fxBgCtMGYXcqkrZm7-_ZQuVu87SSBknEWI_LrSyyNTUqu-1jXUCTxVZEf8Yv-AhiZm2by8rYFeNqDKXByo0LIesA1DqZ0yXAyhlOfnfBdgPSdis9wXaqiAOOjOaGA

YILDIZ 2

https://lh5.googleusercontent.com/R3MaTMhdH06qKO86CtC18wQ1Wvlbp6aqC-bL4FI9lC51APQ-EZk3_KXKwj23HvGhzLJBJrR9DnU1VH9m3OkzhTqrQCD0sdIFIcNrwvgLT9BVPu4aO5w_wMGuMl7tS5rmEtQzl0jzL3expvmBFO8XCbuL3_BRr-On5kPjfhKgFHt6stW-Ew85TMWSii0sBO_08m3osQ

https://lh5.googleusercontent.com/ei1LVnYVNSEBJegJEpn8gw5vix0a9KPl6Gp60nMrNFOTegDWDApEXYLlu9J04lgOQSzcSd8OvX85vIY5tcISEjqoSvkh4PaNwnJS8E8sYegjVNt46qm1Zs2zia_vR-seahOguq5ztgta4ew7lMhaNj7p2OkctkOLOZTO5rhq6sk5D2wXfJmnirbeNalX0pR0B36KKw

YILDIZ 4

https://lh6.googleusercontent.com/0mjba4CWB7sCjBYWSYfUZ5DvuyPj-HVOE0ZJ-8HatnMd0R03ca_aXAIEBd-tvsZm2gl-kSrr15ht-7bWINpjVvM466hE0dLPUJMovEAPKUF5fdON-YwdBDzlhx9tx0fZttBtvTGVBx7QCAPaOt7yQANPHxxvMyt3gE5s2Za5eA5_m_6FNe2SABf_ZnFYsDhzfbGiwA

YILDIZ 5

https://lh5.googleusercontent.com/yJjpFDfbeQUFwzsA7cY_1YLQjcQ6NIllcrVZDONuJyR0kwFehTZWYnRBoFucB0vTpirTGuZPcGoNckg58woU0P1FN_iT3SJXYUr26d3aoeKOh9QdO3DZawiKZ5ukL7f8cKX9bpDGYK-b0Sygh-ew5qYQ1_ec41ST4HZUfehCzAKXsqEJLFJoMoGB3VQDjyugl9YDMA

YILDIZ 5

https://lh3.googleusercontent.com/YSGxHLOmu6DaMRM1WzH-UQ73z60XDgNTrfCUzsBExU-mPbAUI94uJTVCCa-Kg12lezwuic91RHCtxfXbv-71sMKQvmEZbDid1moBtvcCEzNWcLt1LQn9A1wKQj_De4cVgFnyUcpmoTK7f1vRBYELH-L7DXNUOVEytQXMsigf1F-wQ3IDTUjudFyw8nWj5JQ46N6XCQ

YILDIZ 6

https://lh4.googleusercontent.com/XL7uzjfNOSGi-wrDsggiI6S166X19KxJsMmgyM3akbnM85zUAKuGurrtSzqRNKyRuLVo5BglgX573jlOT_NjLiWc9k-MDyUUdieYIJ5Cayl80ynQsSpozJ7FL7Vv5YdtKYfJbNk9_A6bo4FWHe6O04D2p1SBfKA6oMbO26FLPkUnCGAanD7J8E40AUOuizqppcvxgQ

YILDIZ 7

https://lh4.googleusercontent.com/ix9BDinleJg5tn4_pfDjDCjtp9uuiUwH7mZQJIt9UBygBW7jcrKsaka2qBsBfkAGa4wZzrpK9eSP0JXgvg0nE7cxZw2xzybnVJQcHulZLw39TI2gebbRqM8xy7TlplsCPS71ynsPbY_1c1-lnePjhH80eMU8QHtkg1Bv3vz05ykP_ROuYejjGVS4ffLTUcH7rd7y2A

TOPLAR

ÇİÇEK TOP 1

Bir çiçek topu yapmak için (Şekil 1), 2-3 blok hamuru, düz bir halka veya delikli bir top, renkli kağıt, iplikler gereklidir.

30-35 cm çapında bir çiçek topu elde etmek için, hamuru, ortasına 5-6 cm çapında bir halka veya topun yerleştirildiği 8,5 cm çapında bir topun içine yuvarlamak gerekir. ona bağlı güçlü bir iplikle.

Çiçeğin yoğun bir sapı olmalıdır. 2 mm çapında, 8-10 cm uzunluğunda ince bir tahta çubuğun ucu çiçeğin sapına yapıştırılır (Şekil 2), mukavemet için yapıştırma yeri ipliklerle sarılır. Çubuğun diğer ucu bir hamuru topun içine sıkışmış. Büyük çaplı bir çiçek topu yapması gerekiyorsa, iç topu polistiren köpükten yapmak ve çubukları tutkalla tutturmak daha iyidir. Bu tür çiçeklerin 150-200 parçaya ihtiyacı vardır. 8-10 cm'lik bir çiçek boşluğu ile Büyük toplar, 20 cm'lik boşluklardan yapılır.

Çiçek, Şekil 3'te gösterilen herhangi bir desende üçgen, kare, beşgen, altıgen veya yedigen bir kağıt yaprağından yapılır. 3-7.

https://lh5.googleusercontent.com/41qjkd-r7Ewxo03cNIiGFIswuaEFgP76uU5nm_XqC8gD3sSD9ukdVD-rDdsHPxKUDgN8ZcT4-mxrYDo7cH0551NE0Mm3T8x32hUl36d4vQGE8ASdsLf2VHgqRwobExPO7Mk_fGf3OaOiE9Jzwezlg6u2TXzvNPf2lJ1Bv_EqDKRzZGBKTt_oQoFxGHkCFCV873xY-g

ÇİÇEK TOP 1

trilyum

https://lh4.googleusercontent.com/l59S2cAVE6EmvxtwT1OMyuyJpHDU66g0XHr5eD-7EHzBXGRCEu0VU7rBRndXwUlZlBT2POIUmLW0hmfuxE6yMRxcK5zS8QnuBO-qsYhhbLzpqy8XN8M3E1EP7oa3phogQEHEMmLZ7CbEYJoei1H2sjoM3p5c4FG0RZPCBRWL-hiOkVETq3MxiXdnxxm0wjX6nqmANw

NERGİS ZAMBAĞI

https://lh3.googleusercontent.com/2-HiXg54ThOVlvxZVVrKUbmakMW1UDH_0dCQGgxAdFnKNPJxvcbEfdtJUcThFdDlfXkr6s-rCUt-FXmnhGcuiad4hT9SEZAUPSHzYkJBC40RhmDXdmO0SvSmNopTISxXcnd2uS3UxO4OxfTW0LiwZ9mwbN4JQ_l2ZQIspsuwCyfnGC6wMVHgqNitit_WnFyPtnv-tQ

ÇİÇEKLİ KABAK

https://lh3.googleusercontent.com/ANXXBmaNyE23hq64Q8MMGR5UcVARk1WoZlm8BKW-PWWi_qdHEPheJODymoPqxAGHvZoNjsAYEF8bLCecj0SLXYz2hx5HiDd9cX9o_u1NOGG4dm_Cd3FU5iV8-g8NHrKPkTbXTKNDVilv94neL9SclLnkyP9VGY4BO2cw39f7ajTOnh2cfwN98MgIgV7QsgqC-YyuTg

PANKRATIVM

https://lh5.googleusercontent.com/gEiHkZiZU-5ZS0jk_dgcLi2NYxTnrhZuKbi-4X2yi9vyd3qOo-ZWtozLYt7vo-nhb_Duf9k7QaJ29JThR-ml_v8KciE80THCChso5zCCa0ZFMgkD0lmutkHxESLg-YN7xvBOkqs-G4amR_rlvVycQ6kTr79bN2D70ealEYfqJAxKGn_LIj4LIhENn83agYjAQV6yHQ

GIPPEASTRVM

https://lh5.googleusercontent.com/vwspjwvyqPZBDfNZHI9giVtuRndlEaxcGm44s5bVie7P7k9ZSbbMTs5SGlbj2f5NglAwHN-gMBZpBXAY_1MUn9gM0xeV1zH6xlQ4lLt1_t-HvPdFqKYkVqq0T30pHKiiyDhzRDBNq5qpouXr8mLd-ONCRyn0HqEq_XZUo55ZZno8ySeErv3y77btCy3f6rkEpd4YXg

* pozu tekrarlayın. 11-12

ÇİÇEK TOP 2

Bir çiçek topu yapmak için (Şekil 1-2), 2-3 blok hamuru, düz bir halka veya delikli bir top, renkli kağıt, iplikler gereklidir.

30-35 cm çapında bir çiçek topu elde etmek için, hamuru, ortasına 5-6 cm çapında bir halka veya topun yerleştirildiği 8,5 cm çapında bir topun içine yuvarlamanız gerekir. ona bağlı güçlü bir ip.

Çiçek, Şekil 3'te gösterilen herhangi bir desende üçgen, kare, beşgen, altıgen veya yedigen bir kağıt yaprağından yapılır. 4-8. Çiçeğin yoğun bir sapı olmalıdır. Bu tür çiçeklerin 150-200 parçaya ihtiyacı vardır. 8-10 cm iş parçası boyutunda.

2 mm çapında, 8-10 cm uzunluğunda ince bir tahta çubuğun ucu, yapılan çiçeğin sapına yapıştırılır; diğer ucu ise bir hamuru topun içine sıkışmıştır (Şek. 3). Büyük çaplı bir çiçek topu yapması gerekiyorsa, iç topu polistiren köpükten yapmak ve çubukları tutkalla tutturmak daha iyidir. Büyük bir top için boş boyut 20 cm'dir.

https://lh5.googleusercontent.com/4db0S4irR1Fiwct8Blm4rri3FWLcW3dS0ZgrLZ6UR42fQueaAzh-2D96G7Qwzt9pupqjS84DlJkIpTP1u22ZHZt479alu6SOPHByserY7r6fVb2TyTsWP7OZZ6_2b9zBasoZcuEsOeKMHBdjNN_37pWo6wAdcMT2arZ1frVu9IPVPwhotFgvAZhkMWGVJqebsC1ihg

Resim. bir

https://lh6.googleusercontent.com/wxVs22bjL-uBYTxU8d0mfV6fZHJGn1GxZrazM-gRHfF1DjRFZLBTt_7w_Ujoz25TbR7_PwI2AaSY_bTHYY5_FGci51cZjR4TbJKkfxSwurEBwPYZvLLQDoKbreP1UPd3GBzjzglnOdCAjgEtQGrzLFF7ETelcJlP9IYKH6K5vTK0QtQGDCB8gkk82LAmCNVUDkxtHA

Resim. 2

https://lh4.googleusercontent.com/Fg0bH_utiCg12vBzYUuOmGVfhZnhhSVoLv1S6bD91fD8zr7ECnJ8J4_k-LU5U6s95uacvka3EWnVT_ru2hdMZJ6QIzYYCuxoqxuH4e7q20q25W-OgK_mNhbe1bYqcaNOPwPMjeCzQ-6kN-zWY0gVfYbhBcpZp_65urrqubQUUhIxg-L49PhnYHt-0OcflWRWPz9wog

TILLANDSIA

https://lh6.googleusercontent.com/QDVb_QH5HqxRK7FDAN3U4ne3Hb9V42KPPJXsHGfXpDI-CbuRALa0XQSZgfBNNXTCXP6A9AFsAsNEsXQax_btI_p3Nts9AErmfAM8cbsCOCqDoO-sbRvNSePABdLTm94ASfbZAldxrPfEQZJJeok4YWyQd7j3_6HUdYsBQ4kHCrCpliEnEAGj2tV6py-65XI5KgCWLA

ZAMBAK

https://lh3.googleusercontent.com/9mLDzoMeDo_DdhWXgKjVtUB_2DTV5LLSurQkWHsDMimGj0S1TXkp8Dgaoq4q6ZrQhPhgCx50hvldpr5jYDbblCUL4thuPNZPXmNdNTDPzgBkRw_ycj_9qkCTtMSAl5KxXaOuy20VNCDa0GIhaIlN4aRwhvqQOzAUeLIWbVMgf1Ox4uoYP9eQk_NgtSfW3ooxqiT2GQ

STREPTOKARPUS

https://lh6.googleusercontent.com/GIYn6m7Ej7ZQGwQmHpJzRhHF5cCI3jm-_4Y4CzL6zoMgjJCOlkNl3RzIRZgbHNh2DMWODZH6gXLQ8Qtkk8IZD0QqSayCs3-RpeHT2D2umtcgCy1ZhEfv8vfd5GCHN7XRVMw35pW5Pp-BPsrvIrcbgTMQHD7UzAnuiU4TP-VKm_Y_uXg5AnE1PAIc5AGZfTIDeEQR1g

AAPAGERIA

https://lh6.googleusercontent.com/EiFafgNNp7awya6CGW5dJJljsA6iwSxTwad_xdq5xK1mpXZFPlhyl4AzWIk_0Wr9YRivSTGY2mjf3vL4hbgxi9Pgd5gC9TKxrXVl1w3K4mfmq-mUv4ofYhi2ndpJd3SseoqBjwo_Ba7S7wdrAgRpK5Nzikr_ct9ooo_wMERKnrAT_4sJ1leGvgvxYOjKugNk1tiZQg

GLOKSİNYA

https://lh6.googleusercontent.com/1XSxADFDbFKT7axiWBk7fJP2ay9RXFwmks9LediqOexytR0BIhPq7Iap8_VaG8ywdJ99T-0p7eWiGLO1uCf5ECmPNxwsIzEAf-v_d_VqzwVOuSLrpM-zCSzNXadoeh9_vRGYAANwQHYl_hUTV4kqWsWYsyuUlZD4NHMa8qhrp9RXh_pk110gar7YJFj2yZvl8ScO0g

ÇİÇEK TOP 5

Üç boyutlu bir pedisel (Şekil 2-5, 6, 7) olan çiçeklerden bir çiçek topu (Şek. 1) yapılır, bu da onların doğrudan birbirine bağlanmasına izin verir (Şek. 8, 8-1) . Çiçek topunun boyutu, doğrudan kurucu çiçeklerin boyutuna bağlıdır.

https://lh4.googleusercontent.com/AHKSGpe7sbANtaaKnjg0vYWiPCUGCmTrdyMOIRsyY7C8FGazYjo3E5Nrrn_WKmR_JRdy2GMTayyT10p4bFBme_VjBuzrfNun9hKd_6hWR2V9BU0ILhvPm7Pv-25vXGjpRbynnA4Ey8lbtaA_IYC1y12RcUdlbofpwEE6CfiwZTCrYPcqEsl7CgwMprZr5Cyii-o7Fw

Resim. bir

Topun temeli, seçilen çiçek türünden yapıştırılmış bir dairedir.

Pedalın şekline bağlı olarak, pedicel normal üç, dört, beş ve altı kenarlı piramitler olduğu için dairedeki çiçek sayısı farklı olacaktır. Örneğin Aloysia sapının kenarları arasındaki açı 45° yani bir çemberde 360:45=8 adet olması gerekir. (Şek. 9). Pediküllerin kenarları arka arkaya yapıştırılarak bir daire oluşturulur.

Tüm çiçekleri birebir aynı yapmak zor olduğu için son çiçeği yapıştırırken yüzün tüm yüzeyine yapışmayabilir (yarıklar oluşur). Çiçeğe bastırıp ezmek gerekli değildir, kalan çiçekleri yapıştırırken tüm hatalar gizlenecektir.

Daireyi yapıştırdıktan sonra, daha sonra bükülmeyi önlemek için yatay bir yüzey üzerinde küçük bir yük altında kurutmak gerekir. Daha sonra üstte ve altta “*” ile işaretlenmiş yüzlerin arasına üçer çiçek (Şek. 10-11) yapıştırıyoruz ve çapları kesişen iki çiçek çemberi elde ediyoruz (Şek. 12).

ÇİÇEK TOP 7

https://lh3.googleusercontent.com/hNABodKmoUNi0YlYfnkqk3aad22Zi2NuItBMXlAp0LlglGsorJDtDrsdXc1M7KcmIGq_z-GzRVUnaV-8i1Q40vWyPvTrHIkNS5-j5nJnekTXknsPVJE3W3_8EiiPIGfVCHoUaUWQ-zBMEB4oXb53OrTkTDL4LFAkETPr13NysM4iDOZydB2Pw6mINiVCD9K6pQtNWg

ALOYSIA

https://lh4.googleusercontent.com/MyE76mzXo_OEohpBoiOCVkIub7s987WA7rjwmHbCTsSZzmp19dNwWMBiSQZbbaxZqPBVa3RvOq_D2P-ikVUHubrkWgczV0DOWvZhh0JY_mxVpzH2vV7lHe9yMBs2hgS5TiaErthYnwu-PuRjf7-STZVnrOCRmFtx88bKJH5ECB-tHmTZqZVHzdHkmXQi-CqBVyyTyQ

ZİL

https://lh3.googleusercontent.com/8t2LrxdNRxzORXA4UyJDR_vT0lheBIONbqerw5oF8njW5XV9pGXFf1EF8qdg4ILM0Ym5sprAsE7MH_l3Afayg-RR8wLeDJzdw0d0JrMp_pK5lZ8mTZBktASkCaonsxX865_c9VGwAU1G6zOWbXyVSejFQIKvPcZS2kzfsN_eyb2PtaLpoUKyOZj8OXC59iXEKfJvrA

 

VADİ ZAMBAĞI

https://lh6.googleusercontent.com/X0ufsaW1L-jsLoKr0f063A1GA5o-lgqo97hEBoNupBmLrN55rnhzATluURPhmmL2nH8W4AmIRfb8An1YSlSYDGjRfy0SMme1iqC4zqnNRAe_HikUH8RsynBWI0-XVvaQN-iya9i7qX64T6C78ix0ykWOljoLor9D1-cODmnFa67fYXd8lQkv-pCXyIEkkNcAk2vS4w

ÇİÇEK TOP 7

https://lh5.googleusercontent.com/16eUTGeDfGWt01u9tz_ci7totnYvbVcJOXo2FaTEU4hRnNnM6Ex8UXneI_fXuRG4HTZzAxxU03MRmKNjUybBWqZ2_RL-TplgpW1ZVX7THM95nYYJeM_WZgp1v2eT6hYocbu9m_x7oWhkMAL6ygjfeWeOPbye97XJvu20wmbua_f-F9nLmSEhAUBrth_9reXCrLmNww

Resim. 6

Resim. 7

https://lh6.googleusercontent.com/sYfHJVc4bvffFSOPsRaRBwNKbDUimJLCv4zgePRMTgqkzK5HOtn17LonQ1TRqS_kSkIH0w2YUkjF0JQ4WWDQ8VMtn3nX3v00dyMNGKC65GReNB2phtXBWxauhOCTlrUc4KmLWOADm7hN20_Rd3-rNbOwb6D5bFgaf3li0qpolbqwfk4axzfnIOxMGfK9iKJFo-S2_Q

Resim. 8-1

Resim. sekiz

https://lh6.googleusercontent.com/a5jRnVwsNhFIrNLVWE5rNCgbOrS6MGlY2T4s-giIeVqHfUa5qKXysHFDMT89vsejBC2spxmwdInA0a53BTfezfX1UisIg2_4NW-gIO6K-3gwBYQjSfIosdU_IOUg5PqDB7GtqntVaB1Xe9in8u3d6BWuwPJ4YONwvcXHDlG2W0ArE0-KU_5c5WLGPW8aSpNlhwOD9A

Resim. 9-1

Resim. 9

TOPLAR

https://lh5.googleusercontent.com/wjiKeWJqdMCo3bkJfowSUUPztPZjkTn0B6nmgTmcuCkqj_mbIw024cYsBZs-oTLM_hbCFGntID8i-edE3qlCcgotUCiNax7hydAqk8EeTj7HtPwpNRY9OZg8-sCVkaKDa8LCg_AkWu2LCWKz0lopz8DFjw1sZMZz_3cHCz5mssMFtLSFhoUR2Ke6dUlz0dfwKY7E4w

Resim. on

https://lh3.googleusercontent.com/Hb3GYC3WlCGp0-AbaKc9okFAFGZUaLtosL3b1fzQXwFhjFHnmN6gGt-fSa12v6c3VM843MHmkI5egxt-EWWI8NJs_yozdqLIJ_a3WWst2kO0UkqYktOW-Yz7RAM6mHc8iKd1vWddCyYvJq8lo5iY4TrKWYrcCin4xwwPPdkLW4DomTAiunS0qW2mNuN87IEs3nRRQA

Resim. on bir

Aynı çiçekleri serbest bölümlere yapıştırın (Şek. 13). Kenarları tam olarak yapıştırmak mümkün değilse renklerin temas eden yüzeylerini yapıştırın. Bazen top toplandıktan sonra renkler arasında boşluklar kalır. Uygun bir pedicel ile çiçekler bunlara yapıştırılabilir. Bu top için üç yüzlü bir pedisel ile çiçekler kullanabilirsiniz (Şek. 14). Bu, bitmiş ürüne daha yuvarlak bir görünüm verecektir.

https://lh4.googleusercontent.com/osFJJDe91eWPwLswJnGXFcGZbaw8qX3hmrvzBL0c5ABhJz7jJ43H3KgWb5svcqCXB8nzWqNkzNbR8HH3K6j9dZyyKW284zTj2mkQLuxsVmtZ4sjAODAVb3vtvuL61vZwZ4W86RSqbR3I_-R-bstXzMHm0FtKvZweWuJfidOhWh74TsU5xBrlDC_TTr3UD22pvLiNJQ

Resim. 12

https://lh6.googleusercontent.com/Zne5Wd7oKosyJUYgv1VYSyYIPRKJ0I-SMjtk-9VsiUyXhWWky0EiN2N-QX-ZCtWk19yD6K_uCnWrtsPT5JB5aXAyWNVGjFQKDbLfBcZOOTDYkVLndZYkqnIhK3YtHI-0CVFn0GusfbEWknLb-ze3FM_4s_ytvKecvKfe9XrUoyctROOB3rTl8lbMJIlS-lDwPatZLw

Resim. 13

https://lh3.googleusercontent.com/KMsxQ-HM-8PqYUjtEeYJk_2eT602VV1PbmH8mxxpM3ywXZEHt1ocv202gra-6ThM-RML5HFekdbWMbmLUau823Cb6w7tFvaajzgLGmPvLK84yqpXtpFtghAEYpB32R3mDMD38pAUCKGcQf9CDrDHIMgaLkcSudY0XkRPzq2ImQaDMVrh961cI2wK5vDMzccx22zduQ

Resim. on dört

Topu asmak için ip, yapıştırıldıktan sonra dairenin ortasına yapıştırılır. Bitmiş asılı top bir tarafa eğilirse, karşı tarafta (çiçek içinde) dengelemek için bir parça hamuru eklemeniz gerekir.

Böyle bir top için çiçekler, ince ambalaj kağıdından, origami kağıdından yapılabilir.

TOP "SALUT"

https://lh5.googleusercontent.com/HuPWw5HM6gT6dODCiJTm3sUV9zcYy9haA2rmgJceMApsqPwO1-uq8qpcEzgqJfQ20ko76Kd3z5C_kVHN69U2WY62ITz7qcVOL4fSXMVWca4Pza-oXU1sN6cT43jWIeRcuptFuSQMKmBoyQPvMv07Avcs8mmTQnCW1QwJ6PFwx5nNXOY31uVD0_J34JKIGRzB3IzI0w

GÜNEŞ

https://lh6.googleusercontent.com/JgzeORo470SiABFvMaUmXceBMBFaTfeEqyZcQiVzUjxfChzS3gxeIGMDsHSh4gsJDtaw82wuutDRb3K2SR0Q1OAA5W-J57msdFh7VINYHZRptMgfjLItZ_ewdCzCcobnSAuXYMZESkFUEzcw0mki8uAe6TdU2Rev_fbdht7X4d1eAbEX4I3HHp_Pgi9sDQSiohUAGQ

MODÜLLERDEN TOPLAR

Bu tür toplar (Şekil 1-9) bir dizi modülden yapılır Modüller ambalaj kağıdından, origami kağıdından, yazıcılar için renkli kağıttan yapılır. Topların elemanları, PVA tutkalı veya bir tutkal çubuğu ile birbirine yapıştırılır.

https://lh3.googleusercontent.com/tU1y3yD0n4-mhFAlJ0O-Mw2O2FZV8qol1k0mSNmBw7tIFviZjDG9ff4cAadoo1u0Mh6os9Sj7AIurVitfjDlzrB1QwyYo7JJ7LE_y8MuJ8k2bfHtjlmEUZQd9LYfxe4f_5L-OJbEMBVjYd63x5_bJnNLieIhzEocyiNfACA5zTGvzH1pXs4SZ9d2W24XUX3TyrWO1A

Resim. bir

https://lh6.googleusercontent.com/bzZN-kKEKzTYsjmm9XrJ8zcgZ1KupyORZ33HSALf_0NYJGZTqezKbLhr7B0oiCoIJJk1IlWtX5jPwEwiHd4qf0vL6iwbT0TiCkBRZAYNyuuU6SYOwXW8OtehTCuCxCf7z9xv2MmQSOfXedpIoi51CVRiR7xDArlW9VCwUVYOYrCfux4dnJj7HvwG5FtkPxAJphm30g

Resim. 2

https://lh6.googleusercontent.com/2O_Bxnde16FqtnUeZZ65vDBylbPDFvQNUUQh6PHhLJdy0rIgXuarpIm_JI-H-3OjxkaHqlppmINX0cBB1_eO4c_R0UvbmBFmL38MBuu5HZN0wfPwpYY2JhBC1f2Y6Vapf-PqoEABIa7Lbl9OrRF--G52EODHsHFZIt8ciTtmYV7rkLrH9HpIi20uhguF_vYNYjaMMg

Resim. 3

https://lh5.googleusercontent.com/rpdFGs_-lKiyNthha271x-cFx9oC_C9ZCXzgRhDEabGVijG1DXTKWyUkwYWc0v1shIn3ikOshxeeaHXRBPpxzLVTCUlgJ7nQbRGHeMroLIxTqlroC8dTjE3ejWk3YY42LEVhoFH5V3STseoJiFjl2EMIIe_1RieJYMaReAbAuztv-FJJZfJx556808mN6r-eddWPCA

Resim. dört

https://lh4.googleusercontent.com/AG5Qcrhzznk0Bd6BMILeq-SVdCSzbwYu31dK9ONG5cekPsuIQByJFEzv0KTuQUxe6-SCEf4aRHQa4E5vVhwsZsmWae-JKZEJ3BTyH20LUKtwMB-p5TkfEkndp0fJ_FHJ9gthHUmqMldCaSRCYSdhB4uH9hspOE2TwK_9gYtgAKypvAUZIPhp-dJeV_WvJeBklMluyQ

Resim. 5

https://lh5.googleusercontent.com/-WTxMCffQOiIFwXvuGt7Ye7W92E0OFrn86v0GspllddULuitnajoJ21TL4VxuGxh8AbbUXspi1d0McVdJdP8-of9SaNkzlQTWZ_yd5rg4wa_wUvXSlIYB-VNgsn6eWXUsFMkwgBRESF0vv7sNIkPHT8oIv-fI0auCWj9-DYLaJQWQi-6CwtBhn6ACy0lFZaF28RO-Q

Resim. 6

https://lh4.googleusercontent.com/hPEvm2jxpPJuipXg6lBqWynG6BGVovjhtITVU90gvAr8WyP9LHlvd4ZW9iMQ5kK5bUzdvnXSTIHHm14HLfq8ENVK3GMdBQSntqy0I7mheWVjJp2PqlN_n6GDja-9cjX80wa9joox0yLAqxXkPYhZ87QG1nhleshHE8SnaqgFQaLmvKkSz9a1Ewo0vqoMyj06EcK3wg

Resim. 7

https://lh4.googleusercontent.com/cuz4UFYYXOz3xER3KkAtBTGM5SUfwbyN_3PCaNoPZvjF9ddgB6zHBvIs44rh1RJgbTWtudrwS9H33oljSuq5_Yb48TuqGI-IuW0OYPHAHb4OVV76Ueug3fY8ZZqWDdg7iVPsFDNF1qxVb9O8F3LiWW9BuMzdeJq3Vc-R65t0eD9uHov3zMYS5c4ADkuC7ce1hD7zew

Resim. sekiz

79

https://lh6.googleusercontent.com/Zv3UL6-o8iJa-JLs6IpYO0EwlGgL9dcCI615gNMh7kGQ0fbT63qFRFH1vybpR9Zkm16-To4J1C6AmisgfmlHsv00QFWv6QJOkYRID89dg8d9N8CCoEmypyMHvh_CW207nAAKltYUU_FsHhGp_Slium7a02waHWLSrXzf7WtSh8Kki-bi477zakPBtzRH7rxYzGHFEg

Resim. 9

TOPLAR

Bu topların temeli, düzenli üçgenler, dörtgenler, beşgenler ve beşgenlerin bir kombinasyonundan oluşan geometrik cisimlerdir (Şekil 10).

altıgenler.

https://lh6.googleusercontent.com/lsr1e-DSA-ETiZrrw7ew1lQPTf4MTSOae7Kkl2DOfeyJYgM4QVm10KCDUNy89G9Hi7xn_Be7u_jdENskVFJs0a6xj5b7hFMiQkxGp5rrIM0nLkI_k0riMkKdyNXnXSpQkj-rrs2mrqWbyY-IFZ3pcyVHLFjifFBCStJKcO_xZREPX9gGYwCCHONaJi1gWKqKQ89tCw

eşkenar dörtyüzlü

https://lh3.googleusercontent.com/dhPL0iGS_yNYXk0FUVzDByl8J5L23tHfwrq5gMxYjRsxVBM3E3neTcMG_uwxnK9ShvqqiuTj7X2qr_W7Ij6AUHuAyNc9uDJ991OqRmwcpMshGOeNEJeCTGEM9yDbQSudEBezYSyKWIMz7kp2JRZEJ72gF4Xz_Ib80h7810iril73Xe5bei3lHP4Wf_vbBSM8VY4sTg

kesik tetrahedron

https://lh5.googleusercontent.com/05AZ0sbBbfYfp9op2KVm4lIFjPtkJM_zGi9oDD65U6ER94lNd3lR31fQcdq9R7akFh8HenWCiC4jnwuK3ANZM8roRbPPXPiN6BzpfhB1g6AAvhEEhgPgbBtHySUP6q5mdE-a3lPlcv5zx5d8Q0JjeTsm1xeeLWHbdLiPhuxLNf9e1KeyjfUqox_onIwmMnLGxQuMxQ

altı yüzlü (küp)

https://lh4.googleusercontent.com/17eKs1c-v2j3AH-sXARSgIA73w14tkGy7SqhLA6NP-_PtbKWb6XyFGXAMxTBdGUMPiiZX8-KA6fKxQ82IISxaRvZ-PmZk37nfIi194XZKZFw2LTr9AuNnzAdjYdrWuwOIoUwoB05uTcja5qE12iuazy2lSumAy6CLU8NuaEdTILXJABPtqV0rQq9JsAZo38GAvkQ-A

kesik altı yüzlü (küp)

https://lh4.googleusercontent.com/R0qNk7SaJEr3s0xD72f7UpQxvmelTRUmfA88JNkVzvch7QLGaYyLHNLYUfwp-HxC7CEHh9tzCcCXJpqsey7DDjNRZdoOAmxofnK44e_TPuh0xLdawsBup7uB_aT8Bq8otBqrMSIuakVkSvoG1-113A4pziD40gR64wvPpZoHUdI1ak_gSHm2TgsanceiwN3nWjLlhg

oktahedron

https://lh6.googleusercontent.com/H5pq9G9HhEoUjOZrTA9ngdJFRDsIgiZsjZaQ8RtOSKpdfTi4IaDbLbK8zYHzSXEPEGqBlEPy7ctAR12B2E7kadruBwnhN4uiRic1VpUW91mQcvduDxFzHVYzncnq7LZbodokVBpOf03CRHh61LcwMaPjGMw0UX0YnTXRjrCYNwiEoFYJF-8M7SZPIvqehFgdRS3X5g

kübiktahedron

https://lh4.googleusercontent.com/aGpQHdbuX153UfWazuK6iDEKvZuK-Cp2hqGzQ5E5TkyX-QM9B5dcqrMasowRYcnKljGqSe6TO3l_vWcIo1SlqpwsWq_DdsGoEd4O5iHzLLzDg99S8Aa5Z4-cKLbVdK0HdNqTqeTIhdxnyXiHaPILpdDXbqKb7_R0PoFN7M8nvtLiDmyHnYFqnlBtfsTr5KN94P6GIg

eşkenar ikosahedron

https://lh4.googleusercontent.com/JeSg5b_55HAm6TGD3CyBNLYM0nwWJxTjbg7Ae3hwNM7dqtTFGqHnaWFKKAlt8rkBaSmjn-I61LDx_7QayYqrvFP8rWg37A4RVTJHRH6v3jKXpX5FHbfd7l9c1BhIl0oem-DIgoALjPRrv1WFxGz3qnvFD_x8058Wxm1Z7NpWHaKkM5QF3YvhNRM5KE_hMYSlK6Ivvg

on iki yüzlü

https://lh4.googleusercontent.com/3RRSc7CA-cV5dpqClGW2d7xnbjHSznOmgRQgNFnEi4bJKXjWSrPSCvgvyg3nTG7kYMTk-zspOrzUOVs2-2jNV2N6etA6eActILn3HfQUjHL2pG40uO8kbZcwN98_-PdFUqc33W6A1v93ZG7OG63vvnHGNUg40WXqpDDoml7xbNst3oLLU7gG3_GRn3W9P6kfFFARCQ

kesik oktahedron

https://lh3.googleusercontent.com/5gRLGsLerq-o45xT47QW2pW4UWggkgTcazw4sze166GSvhntlh7bYgb5DtqZpBVNdnR5s9NFYS75vWFN7aTD-Z2uTRPAXplZks0zLhHVpiZdSOTMcgwTvQaASwoQ5DUSpSgzaYC_uEr9txGF8Uoi1E3PjCr2CSA2CbavBdAkZIuSUzHGjGtcDejQs7CG5VWiKbqrvA

ikosidodekahedron

https://lh6.googleusercontent.com/5uJ4KfemV0MWS00eJbIxT4iinm3zCNWE5x0dZ2Vn31WjR-HMdUjsL6F8qwEpwS9Jq1RcgUfhlwOKqHWT21znMf6lmfrm_r-FSR40B__quUf0R-72hcOe7u_IQQg6ovEIiff18bcW0nQKk8q9bHd44Ap9ZzhTNe_lSThnMN-waYG_4UEfnQb2XpneRV4BDgKt3Oz_8Q

eşkenar dörtgen

https://lh6.googleusercontent.com/ojFlVZx9vp_Eg9Id1Tze_rPo9YKkIh6USDSFesQgR_RCrkHZeFb9fcW-H-0RLb_OXvnIVdIXCR_zI78E0IQVaHngu758w2ze-JbDaKE7kYx1zXEz8sAIhbKK2MVnu8hAC7B4ztNPCE83UXjt7tle63v_FS6KbJh262y7FXbRYF8jWyntR0Z9COW_jV1wj-L9kaOR5w

kesik eşkenar dörtgen

Resim. on

MODÜL 1

https://lh3.googleusercontent.com/g5uZegDPoW6_Astbqalu8cTERB1_nGvqVrtX1WG2BTCVmcoNyXa04n-bUHzk-ZEOFp2ko6l2uaW9sH1xxJfRijxsIdqGKXKE1bw1oWJhtAbFOZdn7VTn6iLAt1f0gxjsonkgND8NoKZxu27iCPDa-h0UH2Z6u9k3-WgEWzhgMzplWMyK8g200kr9WYkNSSKbRCiQSA

1 2 "0* 3 4

https://lh6.googleusercontent.com/j5-8tbsYXyqyiA5FuE5uXPu7BJzNDOy7SNtm6ANQP4Pe2Lkg9ckz72zYltSsSiPldRj4UIQ3NT1a9L9s-LI1hyCUDl-zlJgVSN3ihslRnp0_6TLAPYYVRIgi96JNT5Ukl-kqVsnHSp7n5Yk8L5dKAlnsZO3bSnmBLEeVlRLE6eDxOxZksHC08Zbzqj4Az6Xme2HlVQ

Modül 1 (Şekil 11), geleneksel Japon origamisinden bir modüldür.

Temeli altı yüzlü (küp) (Şek. 10) olan bu modülden (Şek. 12) en basit topu yapmak için, altı özdeş modül (Şek. 11) (seçenek 1) yapmak ve yapıştırmak gerekir. onları Şekil 13'e göre. Modülleri (Şekil 11) (seçenek 2) yaptıktan sonra, farklı bir şekle sahip bir top elde ederiz (Şekil 14).

https://lh6.googleusercontent.com/-ShB3skKKfLNoUB8sa3QOyLljIDRbWpnV97JEEQ1UCi6qABf198E0pTUi6cB0LvkoXLhKxUrNqg7Z7Mua3gMV4oy3rtD-1bwcXELB29NmFdfzldDXV5Znq618yf5GYxmSZlMe9XRHiJ6JqJS_FJzdkYQqZNr91bpL_qcDg4aUg3CJxJ_A3WY_GXYDikjjFQWu9Dz6w

Resim. 12

https://lh5.googleusercontent.com/--UeQ8KfLZdhcRRbdYOorMnKdkP06EMQezPwN1AviO-lczs36EZzvD33eeSFpretrwj9O5nL1wXLGlMvLmCBDcXWqe0BGHh_z1tptNTKvIg7WnMN98wobggm1DQbFth9QZjPZpFRR2Pvr75V-bl3HJI6vy3YlNSIVYGzTdF3R7NPxvN5DAChiOFQRWnarpjEDR4q_A

Resim. 13

https://lh3.googleusercontent.com/SLGjHD2QQhzdPRp_DaL4BXiKLAtt7-g-TQVl3KbK5mT4iVgT7su3Edzq42IRXTudkMJVmYXupSp6MfxY036OTcs9EI7FrwWWY3u6pjgt26gocquuNa6aV2Zf80xrWai97SQ9hyp02MEXLGjyzSJK6NRkQ-vIGQeVRCwKEHA5iQ1IrAOg82EjSeQ-PYSc0IrydcBJWA

Resim. on dört

Modül 2'yi (Şekil 15) kullanarak birçok sıra dışı top yapabilirsiniz. En basiti, dört normal üçgenden oluşan bir eşkenar dört yüzlüdür (Şekil 10), ancak modülleri birbirine yapıştırmak için köşeleri bükmek gerektiğinden, modül dokuz kenarlı olur. Bu rakam bir üçgene sığar (Şekil 16), bu da bir tetrahedron temelli bir ürün elde etmeyi mümkün kılar (Şekil 17).

https://lh6.googleusercontent.com/ax55IPcESCthluwUsORidiKY6uxMTGD4UNnNPi4CoIL-B2-_t_2DEi1eTf6chWVWHkq9iyrbHDQUHf5a2BIYXs4Y_SNIGnhSsKBd_EIxBuR5hUIa-JD3znreqksTt2ynHM7eVi4ZAyPZGXGw99seclOIr7EIsOxETrtUu6jkAdTJpExNqAssmdY52VDKc_5zD2Wezw

https://lh3.googleusercontent.com/qrZsf6TzwxCIFU-VSRPPQhpmkEECNXYuo5t4gN1OkWvegmJQ-24oPFvetf5AK8ijd6Q5w_Q8sfaez5dfK8T4W8QKmjP2YfRfB-KpV6cDxwIN2IDMKOFUPV9PaqDzfXIDWix3Sd9ECGutR8XFcQuPO8zv0atNwe1ekL1YPwzpmY7P63KM_B_W2q1GyNa1kG4QM2zM5Q

Temel olarak bir eşkenar ikosahedron alırsak (Şekil 10) ve 20 modül 2 (Şekil 15) yaparsak, ortaya çıkan ürün neredeyse düzenli küresel bir şekil alacaktır. Benzer şekilde, modül 3 ve 4'ten küresel formlar gerçekleştirilir (Şekil 18, 19).

MODÜL 2

https://lh6.googleusercontent.com/yO5rRyPslWVShenGcSwOUoDG3jkAD0WQWiu1o6u-sV3hlHe5JGaqsMRS8iEsmnG7xbJmxWUpSKRC1s8euoO-z-q_lE_326URY0v9WQg6THMKGJC37eC2DbC-jd6wfZsicTPprTxOe5xrz4cylkYVPPOxRr7naXlg6rauA-otzNw0_pPMIsH4eHgk6HfoJ-l0rVeCEA

MODÜL 5

https://lh3.googleusercontent.com/iThK2UrfjaucHs-GSOWjxLA3UE5A8L_zxHIjYNKrzTGE2JDr2592_vUn6rmoeApG_dP1eauXZpfnz8ywN7Ry7zb7u2JQKXorftrv8x_rAc1uBsJw3smMRFKsmgQcPzjQ_Ilp3TEeX5ae0xSazqICcQSlEVqP0RSREF4XEs2DC_cESa3IPiofE3oQm6vCWcrgjOBhUQ

Resim. on sekiz

MODÜL 4

https://lh6.googleusercontent.com/7TyVhsQ9WN71yGVQy48lokWJXoeGmaKAkd8cwWSGRL6TJhLuH9jZqlvWYMw0KDP9ObbI1qOC1nvF817gBvFrbvrlFwuaO73RSh4KWQZfQ1se8doO-QnGz7nrs9eYySRrkDUVEUcwBHemGX5L7IA63M1qcHyFG34mrnMw9RlHeoxlMeqb6n9KiYoR1SdfiAPwF05GYg

Resim. 19

1, 2, 3, 4 modüllerini kullanarak ve ürünün tabanının bir veya daha fazla geometrik şeklini alarak çok çeşitli toplar elde edebilirsiniz. Örneğin: cuboctahedron'u temel alarak (Şekil 10), modül 1'i karelere (Şekil 11) ve modül 2'yi üçgenlere (Şekil 15) giriyoruz ve bir top elde ediyoruz (Şekil 4). Bu topun sekiz modülü 2 ve altı modülü 1 vardır.

Top farklı modüllerden yapılmışsa, bunları tüm modüllerin eşleşen tarafları aynı uzunlukta olacak şekilde yapmak gerekir (Şekil 20). Bu, doğru şekle sahip güzel bir ürün elde etmeyi mümkün kılacaktır.

https://lh6.googleusercontent.com/pmEHkmjoKaeFnqGlsuBJgXFEUpX4rL1yHgdYec-GAx9uMoepzGOGRSgCXb1hHPPifsss3iiu_eBbeM92y2MwaOHkiHEAV9enXvmoWWhMlDhxFMP5t2yxwxd4aZSiRLighmGxc3fB-Durd3OJEjWQLPYPtqFy1NpnE9HYmGatcjVAnWjcbpi0tZDczWQOhIFNJdLjcg

Resim. yirmi

Şekil 21-24, aşağıdakilere dayanan bu tür topların örneklerini göstermektedir: ikosidodekahedron, tepesi kesik oktahedron, tepesi kesik eşkenar dörtgen, kübiktahedron.

https://lh6.googleusercontent.com/A9sGYFAptlXVli8XMghymDIhhlc0qi8bw6DUTIC0AhP45d8pLzdZbwt08k1AN30gBYCvL18D6Do4qpIppDiL65XNI_2aSahJLn41MSPaCtIe9o4oNDhpUwuHPjIm6T_xjswlLhyK7Ruj9Fsy_l-jWTKqj23OxQepbqtVb0q9iVFJT3W4X9Z4OvTZpItX-OweG0jkSg

Resim. 21

https://lh4.googleusercontent.com/NbcLV8MDsPOTyS-c1URb2pGMH8khdXoeg5QJiNNzWgJr_ikwh9NHdfqt3hMOVtU_d9EA6XOCW8VTk3JCBPczgxbZKv4PtrbWv4Iw_1RRcAFSRCWQwMadiLCFEovzWiUZAQefNZLKVUNon4hAUXkPlxFGHH7pA3ZXS4QXO3WIfl3CS2nZ4T33W5D8tXYx8UQXp5JGog

Resim. 22

https://lh6.googleusercontent.com/ChcBncDU_-W5k79fB2_pFWPhbV5JrSKpTCafJqnehL5zEl-V0L5WEvaiIFMtIT9r10EE7gLzunS3V8SUfp3k3iTUGkfoZh2KNirvo0jkNJJdKdhnBXI46NE6rNAaK6n8O3RKd0XocZOn2jtR0imKNiiUmdE7H_pj62IcKmysGxCGeIj6P-N6rHWHoocao7W34TPmKQ

Resim. 23

https://lh4.googleusercontent.com/2aaAvsT8tKzm5DD3JVk6nYWVnTX15dhz48vFp18z2ShueGAG3BXyllnqa6iOdy59IWRKOdllfF1Qosre3FoOLhDqchHvaQq5M46YxTtOrLVqIqbbpn_ToWl6-j1y4xumMp9N8r_CPhql0J05mvh64AcW_KFTrKm3yKrsZCezcTxpdi7kjDCFznKL2zKvFwer2KV7OQ

86

DÜZENLİ ÜÇGEN İNŞAATI

ŞEKİLLERİN İNŞAATI

DÜZENLİ ÜÇGEN İNŞAATI

  R yarıçaplı bir daireyi üç eşit parçaya bölen noktalar oluşturmak   için, çapın ucundan, örneğin B noktasından   R   yarıçaplı bir yay çizmek yeterlidir.   Bu   yay, bu daire üzerinde istenen iki nokta 1 ve 2'yi algılar;   üçüncü nokta , aynı çapın karşı ucundaki   A noktası olacaktır .   A, 1, 2 noktalarını   düz çizgilerle birleştirerek, eşkenar (düz) bir D12 üçgeni elde ederiz.

https://lh6.googleusercontent.com/t_DzT3JryxgdbY8_XR08vpntY3ZGpgI5_dXrYpZBqnNK2LWi0t2BJcTNjMIWtzqXfjQWpwme19id0Xbo2pynx_AvOPbWDor3-RKs0cTWTE_BS9HPSAhZqUqeJf9GQ-jVc2TtMav4asU0OnjlO44Z9e21wcD2pxZ9W-4TGXhBTQxghlUJORmIND4IQKvulAePbKsJAg

DÜZENLİ BİR ALTIGEN İNŞAATI

  R yarıçaplı daireyi altı eşit parçaya bölen noktaları bulmak için   , çapın uçlarından, örneğin   A   ve B noktalarından   R   yarıçaplı yaylar çizmek   gerekir   . Bu yaylar, bu daire üzerinde istenen dört noktayı algılayacaktır 1 , 2 ve 3, 4. Beşinci ve altıncı puan bölümleri   A   ve   B noktaları olacaktır.   Tüm bu noktaları düz çizgilerle birleştirerek normal altıgen D24V31'i elde ederiz.

https://lh5.googleusercontent.com/srAFg0vVd9KKCH31__CT1ThgxD0hvYmVXz8Ir4COmgd25MKZMw86bbFAhzh0NmoMZWSsiDhfZJcqEGqbEqrKiokwhH_b6nga0IDwoGyeTpiVXPeENo5DOFPz1b0lWSG6DV3WZOBmtgSUkft6-QeiHUQiZr0l-j4aLfSwdIYjko4il59XTWrAzED1zK6iNvDwkrmaVg

ALTIGEN VE ÜÇGEN

https://lh6.googleusercontent.com/TRbRb3gNcdBfJeLBShFU1YABuXAWG-S9koWhlDCLim-V2_WLN6f2mSji8i938dJA8mkC67s-5Ey0-aS234eYMNz8oRqatUgoG7cUW19elvWHDV2vkaodWhlkY0Z6GrNwLY77IF9HyNNsc1DE7aEkSEzZNtB7NioTGjuL0i97cpPA9oB2VoPK9HrrWGPkPv-J1RqmCQ

88

ÜÇGEN (SEÇENEK 2)

https://lh3.googleusercontent.com/KWYbpIhm7TaT0mfXfX8-2JL7UD_fyr663ZsGA3ftleOaenHxMwg8424fdN_h3RTHaAxrsSvG4upFv1s90YrQ8Qgac5_Z0XVZ0R83kxbOBw4fx3uRsirw3wNnNdQKKC-NkTFQMUxZdX8uCSeHmdjWqgWwBAf6OSDMkstc4P0DASKYiyUHb4MOAa1FfWBeAG2o9AG9Bw

12 3

https://lh3.googleusercontent.com/C2pCOJEPuFimj62LSo6qCXj6TCrsGvFLLCzwo4AG0uSwfgBs1qJWmlguuFmeHJIL3n-RyygGr6P7zGeUZQDj8muthkI4CNXBmWypUDywOs_DLN61XFx2xnhFZ5jiSAyZdu6i2B_3MiCuMzJZzLZkoEQa4UvQu1YxIS4bopHkmMPzEWCDiuHNFHN6ZhqAYPeDYOU_Mg

ALTIGEN (SEÇENEK 2)

https://lh4.googleusercontent.com/KMY3tiaoWT34-CBYQVguOhEHGIrbfV4dem4qGVOFauG2dARnZVcqxEsjmIADHow65Wjsn21xWxzE86fdWto8kl269nh4pXardLSzd0hfKSp17GHh8UQaKjvGEuFlFL3v3OaxCb30SdO9yK5wIDlrAuNrjTgSjC8zwXCilA_5SNm5e4XzvmLAi-7r7uKLN2F-yu4ewQ

KARE YAPMAK

Daireyi dört eşit parçaya bölen noktaları bulmak için, örneğin   AB   ve   CD gibi birbirine dik iki çap çizmek yeterlidir.   A, C, B   ve   D noktalarını   düz çizgilerle   bağlayarak ACBD   karesini elde ederiz.

https://lh6.googleusercontent.com/w_qS3zIpMUSLFNwi1LZJzTyDIkamU0iEkww5K02wAPxTTqh45E_3A4meYPNyIaJJl1zZoxGBznFJ_rqPKqeQ2p_lGkMdea9rsulRCDh7isZO2_Ai8K_xh-1WJ-wXYoAwKWxA4GeB3h-AWZOyrncV1I33NcWv06F38RA8SnreqWfz--F83e6kL3vIHCCgi6j29ukUkw

F. FREBELS MEYDANI

https://lh6.googleusercontent.com/CBhZM2_V_T2EA5eqxaC5GY9ygZ0Sk5cQCbLHFV81ltNowAQ6NEu9zJnVXNHnIyet5TTPJTvgXBdKiPorzsKse0fMjc6AN-OkH_ZJ-hJ6f4NCOybKQdDNo9C_IdYU8Dt-bRv2e_AxAF5cD9-sUcuI6B4C2EGaTLpJtFlb4XxWrzAu__vqBZyCB4yoUBRtuhsI7ElfPA

91

ŞEKİLLERİN İNŞAATI

DÜZENLİ BİR PENTAGON İNŞAATI

  R yarıçaplı bir daireyi   beş eşit parçaya bölen noktalar oluşturmak için ,   AB   ve CD karşılıklı olarak dik iki çap çiziyoruz.   OD yarıçapını   F   noktasında ikiye bölün ve bir   FB   çizgisi çizin .   F   noktasından   FE = FO   segmentini erteliyoruz.   O zaman   BE doğru parçası ongenin kenarına eşittir ve   KL   kirişi beşgenin kenarına eşittir   (   BE parçası   K   ve   L   noktalarını bulmak için bir yarıçap olarak kullanılır ).   KL   kirişine eşit bir yarıçapa sahip   K   ve   L   noktalarından ,  daire üzerinde 1 ve 2 noktalarını buluyoruz   A,   2,   L, K,   1 ve   A noktalarını düz çizgilerle birleştirerek düzgün   bir beşgen elde ediyoruz.

https://lh4.googleusercontent.com/Be0lD17Wg57FsLJ5gArLutfsmoETNRta0jJ1kDoPj2mXBGD6tirtyBtfa8F6frweuOGKlQ0eNh3JTc4cIK1LGkaMsdt5ykbMo6_Lxqi0iTNZNCLJojgATIXgM_0h0HSwaJeoBEpSLRygKdimSb2bh1qu_aDTcesRYvaXJ4jGV340uwLNFZ9fKnGdPg1wtaMmWMjnKg

92

DÜZENLİ BİR PENTAGON İNŞAATI

PENTAGON. YILDIZ

https://lh4.googleusercontent.com/AYERhQdfVFdvyUndLPElqmSb_3FHfrX4ricdblX_rUTabpOL3Y1bpQ7YttPZXcVD9oGBqD0StWD_BC1IzoAZm0OpEiZZg4VDJ6xRcP8yQpftqgNo06AMXxmu2al164LlwfIc6TMC7AhfaZyQM4Ngsyom5aqMPTZpBSct_ZsshaodLU7TnTsDHXeVnn11_9f_qcFjSg

93

SEMBOLLER

görünür kontur çizgisi

görünmez çizgi

bükülme çizgisi

https://lh6.googleusercontent.com/wmZk3KY_isf8rzDxWWVrhuco0_3tR_HOv5VEb7u_eQyGrVvdigYd7dF6QIxooRAazJohmWuvd9rLzQoZM9NKGphmOZFWyMCX8aHBmXU0471pb5AdFuTmTFpABxvWxKI9lsXOJN9DoXWJSwfzgtXp_D7abr54R5QLLu_NcL3tRbDIyVcVn1R-_wzHnRWzGXLoYMdCvA

merkez çizgisi

uzatma, ölçü çizgisi

öne katla arkaya katla

bükmek ve bükmek

https://lh3.googleusercontent.com/LDxEAhJ-3ZPFZXlCv6y1yQhkuOGDAi3oNSrP8QKvCaJjqMKO83T1Y3BZ1GWwXnWAI2x05Fz1DAJFZQentU5c-cCrUPQxQuKVlSDs46kmBA4r_q2r6TPoI-An1TB37ue0LYDLd_ZCT4P0ajn2162mPlCbgctp6J0qWHQGLKO8rHbZ2D43Du8vTOKbfQmCH2gL9hFrzg

dönüş

https://lh3.googleusercontent.com/u-IRXyGSwZBscJANCp5cVX36rWOBBjhtOG3_ybGm6hWnETQJgPZIsecTzz2-4UDiPD9ceJuchYDpxQ5XYAy5nvLETsnyX1vgMevcyInaPFwfCT6BsQ7yzoeLRgcZKYfo0eydxZ-1zPnjFdPXilvlEf92YQv8lHsmN50JdVusQuq7ezIqvs6sgkX0jT7obhk0kPSu8g

94

https://lh5.googleusercontent.com/v6ZMUUFf3dv6ykglyffvr60Ayd5NSMu_pAVdkwXlcdSqZZB2tQ4nq9zvOXHvVaFCG28ybKUlkPV5HAmalAM5uEIxk9pQRViXtMJ8RW_r-d_xeYdIXfyU1ucNQQsqZaEbx8q_F8NMtgDfwNfGZKw-3J0HSowcc4daZC4C23ZFwCeZ3Xk_lqGa6msdVR6u4GiRaBD7ZA

arkaya çevir

https://lh3.googleusercontent.com/7VDOhbPoX67f5L-vYBofGoTItg6NIfax7J2mKro7uiS_chFC4UiwUSeGL_shMikSn70Z9OC97Y3APTgKBCOUyBpagCn2TGJk4zIEhii_q8dFYIIe8P-OvmJQRWEwDzlHN7eTXatV31uGIMYqM93bgbFXYUUK0sTtXIsdEElfxwGrv3WaccC95qL1jwmYZd7HTl75lA

düzeltmek

https://lh3.googleusercontent.com/iqTm3Pd_cRf93GV_4X6sms9yIjIW_fqD-aix87lf8btldwShg8LeUGG61CFpSj5XrOfk9uqlsX7BBMFtvNHau0dPWiY5eTwwituQxbanQ2ydye2OnPJHX2OLyw26HhCp8XHPQpMjFgtvcNG4iYtBddnYlubURgmxinNAVhcXAdMzNSHlzhHhaGA4vvmFq0wtyK5qbA

yapıştırmak, bağlamak

https://lh5.googleusercontent.com/w0QHFga4XW0XRtoXyaYbSVMJUSXUQOzqniuIJOwjfBXS1XmJFJwpivrklXjgUzJU4ygLPR3erbOoEP5tFziN4IIx-cx-ulYcfMKdh46vx9JprVsyzamoYFlciKvtP0K4hjpzRzsE71IRzeTLmGoPcnFPj5g4cPLjnMovwtROOWCjisBXflCDiJ1Lgy3rrKBgbmehtQ

https://lh4.googleusercontent.com/yHbT38fBF_7DIEJl0tslCEQXJ_FM5G1Att8oAPzg_3OTBU2vO_ymkN4RTUOhhcMeR-xXpDudjUY2bhCKINIxsxKFYMI6e3a5d0Km-gOzlxwzG0XTMXrgy25LEE-GhCg6r9HeqOG_lHInAZLHukmyKIwlZgF3XZHVQTLsgyXxQ1A6Yy-aOc9l-jE75ZcZ5pi7KuyJYA

yapıştırma yeri

https://lh4.googleusercontent.com/JzjATcqEAJjRaiJQUgG2d2yXg7bDfIaWW7qNrBe6p883yA_pWvrSklgiTVaYCrEf2ZFxW_Z_SPiWMBX3hKTG8QkaxtKiEZqvFJ4PNKaiQ4nN4KzYs3IfSRnMJHCefotlQsjvmPiIwg319s0u-_g2lBXsJwfNgDU3uh8JeA9E_Njr4aVmNrlqcpOgaPpYLmLlZXenkg

https://lh4.googleusercontent.com/7S8OCiDBdvjHs5CrTgg79hlKoJgeyV1bR2xEJXTI6KVLk9XdfJR00JLCD9xoP524EoyuImbukquNOZylhpNoKZbmP-JrYQai0o9IpMWUc1EO_ICFncRGjci9Hdu1oHcp7Bp4lEOG6P3mCu8loQLfUU97dWVEGj_VmQgmLM61K83uVg-dvbjCHC7qQVMnpvAOvfT5cA

kes, kes

https://lh6.googleusercontent.com/Tx6wH5h7m61onhHbsrAjVn_SuVbXYMV8DCA7qdxmVYg3UeG0MxgaxFFKKbWCUSmnXWvpTX8VcdH3cr5gLr-Ix7ZVhXtbvuFSCMvv6zy6hMXWljrYu0TIwMDlYXf_HyW1CntRozHPGP4yz6cSuexB7LpaZk--4gWAfyx8pmJaElfk1y6VRGUgswlvKea02NwnuSHC-w

https://lh4.googleusercontent.com/iEuHRIYFswIW4gWIflc_HjyL7S3v9IaHKn0B3pvCeGhUPI_NTJEiBXN6VGHRivERJi4AMleDM-xxCf3joDXz7D_0pKVcjM01esclBwvIjbqBkeI_jypXmPkkVPcU_bPY--g3-WGZjcqkEExufGdZfX54IPLAA9bwE743sKULrF-JU2JKRRgCGc78aIh7X1hBHSFcvg

çizmek, daire içine almak

https://lh5.googleusercontent.com/7R4WZVL5uDCQSy6fqh5HSYiPZHwwRGaS05URcz5lGJjoPMwGNSA58N-r78nwVhIr0nMhkpMLMTmj4SgW0kwOIfM-4LtpO4CwQ3Jx1oJXAsxL5nTo5UG--Jgmw062EUbqH4yLr58ImWS1KPhhNUk2kHmRsEsI4Qhn3buoLoggnC-nn-XBNpwf0pEvewo1aw425ZBUZg

https://lh6.googleusercontent.com/oHEtEeNO-MRUjRh360S9qv3lIQ8CGng1Eyp5A1DZs7n-4n2XTweKNw-LRYbhRCy7WVbRX6HGvu1EgtEzxL_6os9CcckHzhZcfFkqrK9l1we2EXIuiu9gtiOtMfy0O8CETH1nmle47AzYkL8zgpt1x-3p0pMUZprpBMnsv1wYls3krknCZtKUJpo_m74TU8SHQbrYqw

içeri gir ve dışarı çık

https://lh6.googleusercontent.com/Apfd-E22hnrcEyPZLQ2TjhektxW00Uo75hXIN8K1Kz0n9tSdaaFd4IRnH1J0eis1kRQ2dqEUQsA7glbHB9w-XBOd9ToR2W8g_Ee-1VpPbeJFfa3oJw_zX6X99w9bkYd0aif2eLPpgqg1zi1vLHHMrYb9DnCSc3HJeCSOA8KdkpBh7agSo2Pl52MFvpDIx329zCamQw

https://lh3.googleusercontent.com/ENJcUWTYZArOukafJLS_-xT9zuY8D0ltFhDYJ3e5yEx-d6qF_JPbY5iI2mR1iHSLSvqDKAI6YuuwLZea0_0Pyz53I-C4DsC95csNhC3YAh9fvgNbLWAsto8C1pJ8teWRxvXigW-tfB-NgK3vbifgJpc0IRQ8lABFqaCZDgVOsWQCXe--SaRTnVGIccfKrVdnGI3z2g

düzeltmek, ortaya çıkmak

https://lh5.googleusercontent.com/jCtfYdZEZ4v72G_nhr0X7fxt2_EOHPdwIRX1lTto4BUCVlLKvaBTEt7qEOF14_8EG-4V4rkiCJx-rPerBHctVRuRKck99BtUCXNpWpch-LdiJhFa0lRVLomb1t_s0BlrTG4_KPB7C1WPS9mj1gbQYpKxL7LFqesm6FNcjA5Nrfuu57KC6LycWwNeNMs4KJegYc-I5w

https://lh6.googleusercontent.com/L2R1e-mWUy-FmQ5YvBXjExhPiury7LsohLUSpS9QzXrSn-VhK-94-QspchF7IaIpoZCHzVJGneIxAHBKcvQ_CsmcTe5bZR2ZV1SdnVQoBRlb7NT-Oe1x87WoB3mGLgQ9lO8im9T0BfhdTPqcbx-4e8y0uYL6-jTt16sVteVNIWFkwAZPOPytZwfCm2wQ-n50gs35gg

birleştirmek

https://lh6.googleusercontent.com/TEoUkatTxJBiZZSiouvC-G7Zc5kYsjqUvUcOOhtvebrXpcK9l_FlMp_sjyP3YsXyTQwmQ4vnemB8Hy524F5OTfBYNOBMiExa0dry60lD4WmvhWKV37Y-C9Ux47gWymkLfIYwU__Azjhk4vYD7Gveab7Z8SBFCUqHRtRINJXhAGcbgLcriPJ3_Kn9EQQS0Lzn7W5rgw

Not: Bazen Büyük Dosyaları tarayıcı açmayabilir...İndirerek okumaya Çalışınız.

Benzer Yazılar

Yorumlar